Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Oct;77(10):5904–5908. doi: 10.1073/pnas.77.10.5904

Nigericin-stimulated ATPase activity in microsomal vesicles of tobacco callus

Heven Sze 1
PMCID: PMC350180  PMID: 16592894

Abstract

The effect of ionophores on K+-stimulated adenosinetriphosphatase (ATPase; ATP phosphohydrolase, EC 3.6.1.3) activity of microsomal vesicles from tobacco callus was investigated. A nigericin-stimulated K+-ATPase activity was enriched in a purified microsomal fraction, which was obtained from the interphase of a dextran density gradient between 1.03 and 1.06 g/ml. The purified microsomal fraction was free of mitochondrial membranes and was composed partly of tightly sealed vesicles as indicated by the low K+ permeability coefficient. The K+-dependent ATPase of this fraction was stimulated slightly by either carbonyl cyanide m-chlorophenylhydrazone (CCCP) (29%) or valinomycin (31%) alone; this ATPase was significantly stimulated by a combination of CCCP and valinomycin (73%) or by nigericin alone (80%). The K+-ATPase activity was stimulated by nigericin at pH 6.5 but not at pH 8.5. At pH 6.5, the K+-ATPase was inhibited by N,N′-dicyclohexylcarbodiimide but not by oligomycin. Nigericin stimulated the ATPase activity in the absence of initial KCl or pH gradients across the vesicle membrane. These results suggest that nigericin stimulates the ATPase activity by dissipating the H+ or K+ gradient or both, and support the hypothesis that the K+-ATPase mediates a H+/K+ transport.

Keywords: potassium, proton, exchange transport, plasma membrane, adenosinetriphosphatase

Full text

PDF
5904

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balke N. E., Hodges T. K. Comparison of Reductions in Adenosine Triphosphate Content, Plasma Membrane-associated Adenosine Triphosphatase Activity, and Potassium Absorption in Oat Roots by Diethylstilbestrol. Plant Physiol. 1979 Jan;63(1):53–56. doi: 10.1104/pp.63.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dulley J. R. Determination of inorganic phosphate in the presence of detergents or protein. Anal Biochem. 1975 Jul;67(1):91–96. doi: 10.1016/0003-2697(75)90275-4. [DOI] [PubMed] [Google Scholar]
  3. Fisher J. D., Hansen D., Hodges T. K. Correlation between ion fluxes and ion-stimulated adenosine triphosphatase activity of plant roots. Plant Physiol. 1970 Dec;46(6):812–814. doi: 10.1104/pp.46.6.812. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gronewald J. W., Cheeseman J. M., Hanson J. B. Comparison of the responses of corn root tissue to fusicoccin and washing. Plant Physiol. 1979 Feb;63(2):255–259. doi: 10.1104/pp.63.2.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hodges T. K., Leonard R. T. Purification of a plasma membrane-bound adenosine triphosphatase from plant roots. Methods Enzymol. 1974;32:392–406. doi: 10.1016/0076-6879(74)32039-3. [DOI] [PubMed] [Google Scholar]
  6. Kaback H. R. Transport across isolated bacterial cytoplasmic membranes. Biochim Biophys Acta. 1972 Aug 4;265(3):367–416. doi: 10.1016/0304-4157(72)90014-7. [DOI] [PubMed] [Google Scholar]
  7. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  8. Leonard R. T., Hodges T. K. Characterization of Plasma Membrane-associated Adenosine Triphosphase Activity of Oat Roots. Plant Physiol. 1973 Jul;52(1):6–12. doi: 10.1104/pp.52.1.6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lin W., Hanson J. B. Increase in electrogenic membrane potential with washing of corn root tissue. Plant Physiol. 1974 Nov;54(5):799–801. doi: 10.1104/pp.54.5.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lin W. Potassium and Phosphate Uptake in Corn Roots: Further Evidence for an Electrogenic H/K Exchanger and an OH/Pi Antiporter. Plant Physiol. 1979 May;63(5):952–955. doi: 10.1104/pp.63.5.952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Malone C. P., Burke J. J., Hanson J. B. Histochemical Evidence for the Occurrence of Oligomycin-sensitive Plasmalemma ATPase in Corn Roots. Plant Physiol. 1977 Dec;60(6):916–922. doi: 10.1104/pp.60.6.916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mettler I. J., Leonard R. T. Ion transport in isolated protoplasts from tobacco suspension cells: I. General characteristics. Plant Physiol. 1979 Jan;63(1):183–190. doi: 10.1104/pp.63.1.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mitchell P., Moyle J. Proton translocation coupled to ATP hydrolysis in rat liver mitochondria. Eur J Biochem. 1968 May;4(4):530–539. doi: 10.1111/j.1432-1033.1968.tb00245.x. [DOI] [PubMed] [Google Scholar]
  14. Petraglia T., Poole R. J. ATP Levels and their Effects on Plasmalemma Influxes of Potassium Chloride in Red Beet. Plant Physiol. 1980 May;65(5):969–972. doi: 10.1104/pp.65.5.969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pierce W. S., Higinbotham N. Compartments and Fluxes of K, NA, and CL in Avena Coleoptile Cells. Plant Physiol. 1970 Nov;46(5):666–673. doi: 10.1104/pp.46.5.666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sachs G., Chang H. H., Rabon E., Schackman R., Lewin M., Saccomani G. A nonelectrogenic H+ pump in plasma membranes of hog stomach. J Biol Chem. 1976 Dec 10;251(23):7690–7698. [PubMed] [Google Scholar]
  17. Sze H., Hodges T. K. Characterization of passive ion transport in plasma membrane vesicles of oat roots. Plant Physiol. 1976 Sep;58(3):304–308. doi: 10.1104/pp.58.3.304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sze H., Hodges T. K. Selectivity of alkali cation influx across the plasma membrane of oat roots: cation specificity of the plasma membrane ATPase. Plant Physiol. 1977 Apr;59(4):641–646. doi: 10.1104/pp.59.4.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sze H., Solomon A. K. Calcium-induced potassium pathway in sided erythrocyte membrane vesicles. Biochim Biophys Acta. 1979 Jun 13;554(1):180–194. doi: 10.1016/0005-2736(79)90017-8. [DOI] [PubMed] [Google Scholar]
  20. Sze H., Solomon A. K. Permeability of human erythrocyte membrane vesicles to alkali cations. Biochim Biophys Acta. 1979 Feb 2;550(3):393–406. doi: 10.1016/0005-2736(79)90144-5. [DOI] [PubMed] [Google Scholar]
  21. van Thienen G., Postma P. W. Coupling between energy conservation and active transport of serine in Escherichia coli. Biochim Biophys Acta. 1973 Oct 25;323(3):429–440. doi: 10.1016/0005-2736(73)90188-0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES