Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Oct;77(10):5948–5952. doi: 10.1073/pnas.77.10.5948

Amiloride inhibits murine erythroleukemia cell differentiation: evidence for a Ca2+ requirement for commitment.

R Levenson, D Housman, L Cantley
PMCID: PMC350189  PMID: 6934526

Abstract

The effect of amiloride (an inhibitor of passive Na+ transport in many tissues) on the differentiation of murine erythroleukemia cells was investigated. Amiloride completely blocked the dimethyl sulfoxide (Me2SO)-induced erythroid differentiation of cells at a concentration (10 microgram/ml) that did not affect cell proliferation. Amiloride also prevented the decrease in cell volume normally observed afte a 20-hr exposure to Me2SO. The ratio of total cell Na+ to total cell water was essentially the same for control cells, Me2SO-treated cells, and cells treated with Me2SO plus amiloride. However, cells treated for 24 hr with Me2SO had a rate of Ca2+ uptake that was twice that of untreated cells and a similarly higher Ca2+ content. Addition of amiloride plus Me2SO prevented both the increase in Ca2+ uptake rate and the increase in Ca2+ content. Cells grown in the presence of Me2SO plus amiloride initiated differentiation immediately after removal of amiloride or addition of the Ca2+ ionophore A23187 (1 microgram/ml). Addition of sufficient ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid to reduce free extracellular Ca2+ to submicromolar levels prevented Me2SO-induced differentiation while only slightly affecting cell proliferation. These results suggest that an increase in in the Ca2+ level is an essential step in Me2SO induction, that amiloride either directly or indirectly inhibits this process, and that Me2SO has an early effect on cells that is necessary for differentiation and is not mimicked by A23187.

Full text

PDF
5948

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aceves J., Cereijido M. The effect of amiloride on sodium and potassium fluxes in red cells. J Physiol. 1973 Mar;229(3):709–718. doi: 10.1113/jphysiol.1973.sp010162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baer J. E., Jones C. B., Spitzer S. A., Russo H. F. The potassium-sparing and natriuretic activity of N-amidino-3,5-diamino-6-chloropyrazinecarboxamide hydrochloride dihydrate (amiloride hydrochloride). J Pharmacol Exp Ther. 1967 Aug;157(2):472–485. [PubMed] [Google Scholar]
  3. Bentley P. J. Amiloride: a potent inhibitor of sodium transport across the toad bladder. J Physiol. 1968 Mar;195(2):317–330. doi: 10.1113/jphysiol.1968.sp008460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bernstein A., Hunt D. M., Crichley V., Mak T. W. Induction by ouabain of hemoglobin synthesis in cultured Friend erythroleukemic cells. Cell. 1976 Nov;9(3):375–381. doi: 10.1016/0092-8674(76)90082-9. [DOI] [PubMed] [Google Scholar]
  5. Cantley L. C., Jr, Resh M. D., Guidotti G. Vanadate inhibits the red cell (Na+, K+) ATPase from the cytoplasmic side. Nature. 1978 Apr 6;272(5653):552–554. doi: 10.1038/272552a0. [DOI] [PubMed] [Google Scholar]
  6. Geller R., Levenson R., Housman D. Significance of the cell cycle in commitment of murine erythroleukemia cells to erythroid differentiation. J Cell Physiol. 1978 May;95(2):213–222. doi: 10.1002/jcp.1040950211. [DOI] [PubMed] [Google Scholar]
  7. Gusella J., Geller R., Clarke B., Weeks V., Housman D. Commitment to erythroid differentiation by friend erythroleukemia cells: a stochastic analysis. Cell. 1976 Oct;9(2):221–229. doi: 10.1016/0092-8674(76)90113-6. [DOI] [PubMed] [Google Scholar]
  8. Harold F. M. Ion currents and physiological functions in microorganisms. Annu Rev Microbiol. 1977;31:181–203. doi: 10.1146/annurev.mi.31.100177.001145. [DOI] [PubMed] [Google Scholar]
  9. Harrison P. R. Analysis of erythropoeisis at the molecular level. Nature. 1976 Jul 29;262(5567):353–356. doi: 10.1038/262353a0. [DOI] [PubMed] [Google Scholar]
  10. Hennings H., Michael D., Cheng C., Steinert P., Holbrook K., Yuspa S. H. Calcium regulation of growth and differentiation of mouse epidermal cells in culture. Cell. 1980 Jan;19(1):245–254. doi: 10.1016/0092-8674(80)90406-7. [DOI] [PubMed] [Google Scholar]
  11. Katz A. M., Repke D. I., Upshaw J. E., Polascik M. A. Characterization of dog cardiac microsomes. Use of zonal centrifugation to fractionate fragmented sarcoplasmic reticulum, (Na+ + K+)--activated ATPase and mitochondrial fragments. Biochim Biophys Acta. 1970 Jun 30;205(3):473–490. doi: 10.1016/0005-2728(70)90113-1. [DOI] [PubMed] [Google Scholar]
  12. Koch K. S., Leffert H. L. Increased sodium ion influx is necessary to initiate rat hepatocyte proliferation. Cell. 1979 Sep;18(1):153–163. doi: 10.1016/0092-8674(79)90364-7. [DOI] [PubMed] [Google Scholar]
  13. Levenson R., Housman D. Developmental program of murine erythroleukemia cells. Effect of the inhibition of protein synthesis. J Cell Biol. 1979 Sep;82(3):715–725. doi: 10.1083/jcb.82.3.715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Levenson R., Housman D. Memory of MEL cells to a previous exposure to inducer. Cell. 1979 Jul;17(3):485–490. doi: 10.1016/0092-8674(79)90256-3. [DOI] [PubMed] [Google Scholar]
  15. Levenson R., Kernen J., Mitrani A., Housman D. DNA synthesis is not required for the commitment of murine erythroleukemia cells. Dev Biol. 1980 Jan;74(1):224–230. doi: 10.1016/0012-1606(80)90064-0. [DOI] [PubMed] [Google Scholar]
  16. Loritz F., Bernstein A., Miller R. G. Early and late volume changes during erythroid differentiation of cultured Friend leukemic cells. J Cell Physiol. 1977 Mar;90(3):423–437. doi: 10.1002/jcp.1040900306. [DOI] [PubMed] [Google Scholar]
  17. Lyman G. H., Preisler H. D., Papahadjopoulos D. Membrane action of DMSO and other chemical inducers of Friend leukaemic cell differentiation. Nature. 1976 Jul 29;262(5567):361–363. doi: 10.1038/262360a0. [DOI] [PubMed] [Google Scholar]
  18. Mager D., Bernstein A. Early transport changes during erythroid differentiation of Friend leukemic cells. J Cell Physiol. 1978 Mar;94(3):275–285. doi: 10.1002/jcp.1040940305. [DOI] [PubMed] [Google Scholar]
  19. Mager D., Bernstein A. The program of Friend cell erythroid differentiation: early changes in Na+/K+ ATPase function. J Supramol Struct. 1978;8(4):431–438. doi: 10.1002/jss.400080405. [DOI] [PubMed] [Google Scholar]
  20. Mitchell L. H., Soll D. R. Commitment to germ tube or bud formation during release from stationary phase in Candida albicans. Exp Cell Res. 1979 Apr;120(1):167–179. doi: 10.1016/0014-4827(79)90547-0. [DOI] [PubMed] [Google Scholar]
  21. Reeves J. P., Sutko J. L. Sodium-calcium ion exchange in cardiac membrane vesicles. Proc Natl Acad Sci U S A. 1979 Feb;76(2):590–594. doi: 10.1073/pnas.76.2.590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ridgway E. B., Gilkey J. C., Jaffe L. F. Free calcium increases explosively in activating medaka eggs. Proc Natl Acad Sci U S A. 1977 Feb;74(2):623–627. doi: 10.1073/pnas.74.2.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Smith J. B., Rozengurt E. Lithium transport by fibroblastic mouse cells: characterization and stimulation by serum and growth factors in quiescent cultures. J Cell Physiol. 1978 Dec;97(3 Pt 2 Suppl 1):441–449. doi: 10.1002/jcp.1040970319. [DOI] [PubMed] [Google Scholar]
  24. Stanners C. P., Eliceiri G. L., Green H. Two types of ribosome in mouse-hamster hybrid cells. Nat New Biol. 1971 Mar 10;230(10):52–54. doi: 10.1038/newbio230052a0. [DOI] [PubMed] [Google Scholar]
  25. Steinhardt R. A., Epel D. Activation of sea-urchin eggs by a calcium ionophore. Proc Natl Acad Sci U S A. 1974 May;71(5):1915–1919. doi: 10.1073/pnas.71.5.1915. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES