Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Oct;77(10):6152–6156. doi: 10.1073/pnas.77.10.6152

Constitutive uncoupling of pathways of gene expression that control growth and differentiation in myeloid leukemia: a model for the origin and progression of malignancy.

L Sachs
PMCID: PMC350232  PMID: 6934543

Abstract

Chemical carcinogens and tumor promoters have pleiotropic effects. Tumor initiators can produce a variety of mutations and tumor promotres can regulate a variety of physiological molecles that control growth and differentiation. The appropriate mutation and the regulation of the appropriate molecules to induce cell growth can initiate and promote the sequence of changes required for transformation of normal cells into malignant cells. After this sequence of changes, some tumors can still be induced to revert with a high frequency from a malignant phenotype to a nonmalignant phenotype. Results obtained from analysis of regulation of growth and differentiation in normal and leukemic myeloid cells, the phenotypic reversion of malignancy by induction of normal differentiation in myeloid leukemia, and the blocks in differentiation-defective leukemic cell mutants have been used to propose a general model for the origin and progression of malignancy. The model states that malignancy originates by changing specific pathways of gene expresion required for growth from inducible to constitutive in cells that can still be induced to differentiate normally by the physiological inducer of differentiation. The malignant cells, unlike the normal cells, then no longer require the physiological inducer for growth. This changes the requirements for growth and uncouples growth from differentiation. Constitutive expression of other specific pathways can uncouple other controls, which then causes blocks in differentiation and the further progression of malignancy. The existence of specific constitutive pathways of gene expression that uncouple controls in malignant cells can also exlain the expresion of fetal proteins, hormones, and some other specialized products of normal development in various types of tumors.

Full text

PDF
6152

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Austin P. E., McCulloch E. A., Till J. E. Characterization of the factor in L-cell conditioned medium capable of stimulating colony formation by mouse marrow cells in culture. J Cell Physiol. 1971 Apr;77(2):121–134. doi: 10.1002/jcp.1040770202. [DOI] [PubMed] [Google Scholar]
  2. Azumi J. I., Sachs L. Chromosome mapping of the genes that control differentiation and malignancy in myeloid leukemic cells. Proc Natl Acad Sci U S A. 1977 Jan;74(1):253–257. doi: 10.1073/pnas.74.1.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BERWALD Y., SACHS L. IN VITRO CELL TRANSFORMATION WITH CHEMICAL CARCINOGENS. Nature. 1963 Dec 21;200:1182–1184. doi: 10.1038/2001182a0. [DOI] [PubMed] [Google Scholar]
  4. Barrett J. C., Ts'o P. O. Evidence for the progressive nature of neoplastic transformation in vitro. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3761–3765. doi: 10.1073/pnas.75.8.3761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Barrett J. C., Ts'o P. O. Relationship between somatic mutation and neoplastic transformation. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3297–3301. doi: 10.1073/pnas.75.7.3297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Berwald Y., Sachs L. In vitro transformation of normal cells to tumor cells by carcinogenic hydrocarbons. J Natl Cancer Inst. 1965 Oct;35(4):641–661. [PubMed] [Google Scholar]
  7. Bloch-Shtacher N., Sachs L. Identification of a chromosome that controls malignancy in Chinese hamster cells. J Cell Physiol. 1977 Nov;93(2):205–212. doi: 10.1002/jcp.1040930206. [DOI] [PubMed] [Google Scholar]
  8. Bradley T. R., Metcalf D. The growth of mouse bone marrow cells in vitro. Aust J Exp Biol Med Sci. 1966 Jun;44(3):287–299. doi: 10.1038/icb.1966.28. [DOI] [PubMed] [Google Scholar]
  9. Chen T. T., Heidelberger C. Quantitative studies on the malignant transformation of mouse prostate cells by carcinogenic hydrocarbons in vitro. Int J Cancer. 1969 Mar 15;4(2):166–178. doi: 10.1002/ijc.2910040207. [DOI] [PubMed] [Google Scholar]
  10. Cline M. J., Golde D. W. Cellular interactions in haematopoiesis. Nature. 1979 Jan 18;277(5693):177–181. doi: 10.1038/277177a0. [DOI] [PubMed] [Google Scholar]
  11. Cohen R., Pacifici M., Rubinstein N., Biehl J., Holtzer H. Effect of a tumour promoter on myogenesis. Nature. 1977 Apr 7;266(5602):538–540. doi: 10.1038/266538a0. [DOI] [PubMed] [Google Scholar]
  12. Collins S. J., Gallo R. C., Gallagher R. E. Continuous growth and differentiation of human myeloid leukaemic cells in suspension culture. Nature. 1977 Nov 24;270(5635):347–349. doi: 10.1038/270347a0. [DOI] [PubMed] [Google Scholar]
  13. Dewey M. J., Martin D. W., Jr, Martin G. R., Mintz B. Mosaic mice with teratocarcinoma-derived mutant cells deficient in hypoxanthine phosphoribosyltransferase. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5564–5568. doi: 10.1073/pnas.74.12.5564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. DiPaolo J. A., Donovan P., Nelson R. Quantitative studies of in vitro transformation by chemical carcinogens. J Natl Cancer Inst. 1969 May;42(5):867–874. [PubMed] [Google Scholar]
  15. Douer D., Sachs L. Production of human T cell colony-inducing activity (TCI) by malignant cells from patients with lymphocytic and myeloid leukemia. J Immunol. 1979 Jun;122(6):2473–2477. [PubMed] [Google Scholar]
  16. FOULDS L. The experimental study of tumor progression: a review. Cancer Res. 1954 Jun;14(5):327–339. [PubMed] [Google Scholar]
  17. Fibach E., Hayashi M., Sachs L. Control of normal differentiation of myeloid leukemic cells to macrophages and granulocytes. Proc Natl Acad Sci U S A. 1973 Feb;70(2):343–346. doi: 10.1073/pnas.70.2.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Fibach E., Landau T., Sachs L. Normal differentiation of myeloid leukaemic cells induced by a differentiation-inducing protein. Nat New Biol. 1972 Jun 28;237(78):276–278. doi: 10.1038/newbio237276a0. [DOI] [PubMed] [Google Scholar]
  19. Fibach E., Sachs L. Control of normal differentiation of myeloid leukemic cells. IV. Induction of differentiation by serum from endotoxin treated mice. J Cell Physiol. 1974 Apr;83(2):177–185. doi: 10.1002/jcp.1040830203. [DOI] [PubMed] [Google Scholar]
  20. Fibach E., Sachs L. Control of normal differentiation of myeloid leukemic cells. VIII. Induction of differentiation to mature granulocytes in mass culture. J Cell Physiol. 1975 Oct;86(2 Pt 1):221–230. doi: 10.1002/jcp.1040860205. [DOI] [PubMed] [Google Scholar]
  21. Fibach E., Sachs L. Control of normal differentiation of myeloid leukemic cells. XI. Induction of a specific requirement for cell viability and growth during the differentiation of myeloid leukemic cells. J Cell Physiol. 1976 Oct;89(2):259–266. doi: 10.1002/jcp.1040890209. [DOI] [PubMed] [Google Scholar]
  22. Friend C. The phenomenon of differentiation in murine erythroleukemic cells. Harvey Lect. 1978;72:253–281. [PubMed] [Google Scholar]
  23. GINSBURG H., SACHS L. FORMATION OF PURE SUSPENSIONS OF MAST CELLS IN TISSUE CULTURE BY DIFFERENTIATION OF LYMPHOID CELLS FROM THE MOUSE THYMUS. J Natl Cancer Inst. 1963 Jul;31:1–39. [PubMed] [Google Scholar]
  24. Harris H., Miller O. J., Klein G., Worst P., Tachibana T. Suppression of malignancy by cell fusion. Nature. 1969 Jul 26;223(5204):363–368. doi: 10.1038/223363a0. [DOI] [PubMed] [Google Scholar]
  25. Hayashi M., Fibach E., Sachs L. Control of normal differentiation of myeloid leukemic cells. V. Normal differentiation in aneuploid leukemic cells and the chromosome banding pattern of D+ and D minus clones. Int J Cancer. 1974 Jul 15;14(1):40–48. doi: 10.1002/ijc.2910140106. [DOI] [PubMed] [Google Scholar]
  26. Hitotsumachi S., Rabinowitz Z., Sachs L. Ciromosomal control of reversion in transformed cells. Nature. 1971 Jun 25;231(5304):511–514. doi: 10.1038/231511a0. [DOI] [PubMed] [Google Scholar]
  27. Hoffman-Liebermann B., Sachs L. Regulation of actin and other proteins in the differentiation of myeloid leukemic cells. Cell. 1978 Aug;14(4):825–834. doi: 10.1016/0092-8674(78)90338-0. [DOI] [PubMed] [Google Scholar]
  28. Honma Y., Kasukabe T., Okabe J., Hozumi M. Glucocorticoid binding and mechanism of resistance in some clones of mouse myeloid leukemic cells resistant to induction of differentiation by dexamethasone. J Cell Physiol. 1977 Nov;93(2):227–235. doi: 10.1002/jcp.1040930208. [DOI] [PubMed] [Google Scholar]
  29. Huberman E., Callaham M. F. Induction of terminal differentiation in human promyelocytic leukemia cells by tumor-promoting agents. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1293–1297. doi: 10.1073/pnas.76.3.1293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Huberman E., Mager R., Sachs L. Mutagenesis and transformation of normal cells by chemical carcinogens. Nature. 1976 Nov 25;264(5584):360–361. doi: 10.1038/264360a0. [DOI] [PubMed] [Google Scholar]
  31. Huberman E., Sachs L. Mutability of different genetic loci in mammalian cells by metabolically activated carcinogenic polycyclic hydrocarbons. Proc Natl Acad Sci U S A. 1976 Jan;73(1):188–192. doi: 10.1073/pnas.73.1.188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Huberman E., Sachs L., Yang S. K., Gelboin V. Identification of mutagenic metabolites of benzo(a)pyrene in mammalian cells. Proc Natl Acad Sci U S A. 1976 Feb;73(2):607–611. doi: 10.1073/pnas.73.2.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Huberman E., Salzberg S., Sachs L. The in vitro induction of an increase in cell multiplication and cellular life span by the water-soluble carcinogen dimethylnitrosamine. Proc Natl Acad Sci U S A. 1968 Jan;59(1):77–82. doi: 10.1073/pnas.59.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Ichikawa Y. Differentiation of a cell line of myeloid leukemia. J Cell Physiol. 1969 Dec;74(3):223–234. doi: 10.1002/jcp.1040740303. [DOI] [PubMed] [Google Scholar]
  35. Ichikawa Y., Maeda M., Horuichi M. In vitro differentiation of Rauscher-virus-induced myeloid leukemia cells. Int J Cancer. 1976 Jun 15;17(6):789–787. doi: 10.1002/ijc.2910170616. [DOI] [PubMed] [Google Scholar]
  36. Ichikawa Y., Paran M., Sachs L. The stimulation of tumor cell growth by a substance produced by normal and tumor cells. J Cell Physiol. 1969 Feb;73(1):43–47. doi: 10.1002/jcp.1040730107. [DOI] [PubMed] [Google Scholar]
  37. Ichikawa Y., Pluznik D. H., Sachs L. Feedback inhibition of the development of macrophage and granulocyte colonies. I. Inhibition by macrophage. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1480–1486. doi: 10.1073/pnas.58.4.1480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Ichikawa Y., Pluznik D. H., Sachs L. In vitro control of the development of macrophage and granulocyte colonies. Proc Natl Acad Sci U S A. 1966 Aug;56(2):488–495. doi: 10.1073/pnas.56.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Klein G., Friberg S., Jr, Wiener F., Harris H. Hybrid cells derived from fusion of TA3-Ha ascites carcinoma with normal fibroblasts. 1. Malignancy, karyotype, and formation of isoantigenic variants. J Natl Cancer Inst. 1973 May;50(5):1259–1268. doi: 10.1093/jnci/50.5.1259. [DOI] [PubMed] [Google Scholar]
  40. Klein G. Lymphoma development in mice and humans: diversity of initiation is followed by convergent cytogenetic evolution. Proc Natl Acad Sci U S A. 1979 May;76(5):2442–2446. doi: 10.1073/pnas.76.5.2442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Krystosek A., Sachs L. Control of lysozyme induction in the differentiation of myeloid leukemic cells. Cell. 1976 Dec;9(4 Pt 2):675–684. doi: 10.1016/0092-8674(76)90131-8. [DOI] [PubMed] [Google Scholar]
  42. Krystosek A., Sachs L. Steroid hormone receptors and the differentiation of myeloid leukemic cells. J Cell Physiol. 1977 Sep;92(3):345–352. doi: 10.1002/jcp.1040920303. [DOI] [PubMed] [Google Scholar]
  43. Landau T., Sachs L. Characterization of the inducer required for the development of macrophage and granulocyte colonies. Proc Natl Acad Sci U S A. 1971 Oct;68(10):2540–2544. doi: 10.1073/pnas.68.10.2540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Landolph J. R., Heidelberger C. Chemical carcinogens produce mutations to ouabain resistance in transformable C3H/10T1/2 Cl 8 mouse fibroblasts. Proc Natl Acad Sci U S A. 1979 Feb;76(2):930–934. doi: 10.1073/pnas.76.2.930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Levine L., Hassid A. Effects of phorbol-12,13-diesters on prostaglandin production and phospholipase activity in canine kidney (MDCK) cells. Biochem Biophys Res Commun. 1977 Nov 21;79(2):477–484. doi: 10.1016/0006-291x(77)90182-6. [DOI] [PubMed] [Google Scholar]
  46. Liebermann D., Hoffman-Liebermann B., Sachs L. Molecular dissection of differentiation in normal and leukemic myeloblasts: separately programmed pathways of gene expression. Dev Biol. 1980 Sep;79(1):46–63. doi: 10.1016/0012-1606(80)90072-x. [DOI] [PubMed] [Google Scholar]
  47. Liebermann D., Sachs L. Increase of normal myeloblast viability and multiplication without blocking differentiation by type C RNA virus from myeloid leukemic cells. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3353–3357. doi: 10.1073/pnas.76.7.3353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Lotem J., Lipton J. H., Sachs L. Separation of different molecular forms of macrophage- and granulocyte-inducing proteins for normal and leukemic myeloid cells. Int J Cancer. 1980 Jun 15;25(6):763–771. doi: 10.1002/ijc.2910250612. [DOI] [PubMed] [Google Scholar]
  49. Lotem J., Sachs L. Control of normal differentiation of myeloid leukemic cells. XII. Isolation of normal myeloid colony-forming cells from bone marrow and the sequence of differentiation to mature granulocytes in normal and D+ myeloid leukemic cells. J Cell Physiol. 1977 Jul;92(1):97–108. doi: 10.1002/jcp.1040920112. [DOI] [PubMed] [Google Scholar]
  50. Lotem J., Sachs L. Different blocks in the differentiation of myeloid leukemic cells. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3507–3511. doi: 10.1073/pnas.71.9.3507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Lotem J., Sachs L. Genetic dissection of the control of normal differentiation in myeloid leukemic cells. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5554–5558. doi: 10.1073/pnas.74.12.5554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Lotem J., Sachs L. Genetic dissociation of different cellular effects of interferon on myeloid leukemic cells. Int J Cancer. 1978 Aug 15;22(2):214–220. doi: 10.1002/ijc.2910220216. [DOI] [PubMed] [Google Scholar]
  53. Lotem J., Sachs L. In vivo induction of normal differentiation in myeloid leukemia cells. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3781–3785. doi: 10.1073/pnas.75.8.3781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Lotem J., Sachs L. Induction of specific changes in the surface membrane of myeloid leukemic cells by steroid hormones. Int J Cancer. 1975 May 15;15(5):731–740. doi: 10.1002/ijc.2910150504. [DOI] [PubMed] [Google Scholar]
  55. Lotem J., Sachs L. Potential pre-screening for therapeutic agents that induce differentiation in human myeloid leukemia cells. Int J Cancer. 1980 May 15;25(5):561–564. doi: 10.1002/ijc.2910250503. [DOI] [PubMed] [Google Scholar]
  56. Lotem J., Sachs L. Regulation of normal differentiation in mouse and human myeloid leukemic cells by phorbol esters and the mechanism of tumor promotion. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5158–5162. doi: 10.1073/pnas.76.10.5158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Maeda S., Sachs L. Control of normal differentiation of myeloid leukemic cells. XIII. Inducibility for some stages of differentiation by dimethylsulfoxide and its disassociation from inducibility by MGI. J Cell Physiol. 1978 Feb;94(2):181–185. doi: 10.1002/jcp.1040940207. [DOI] [PubMed] [Google Scholar]
  58. Marks P. A., Rifkind R. A. Erythroleukemic differentiation. Annu Rev Biochem. 1978;47:419–448. doi: 10.1146/annurev.bi.47.070178.002223. [DOI] [PubMed] [Google Scholar]
  59. Mastro A. M., Mueller G. C. Synergistic action of phorbol esters in mitogen-activated bovine lymphocytes. Exp Cell Res. 1974 Sep;88(1):40–46. doi: 10.1016/0014-4827(74)90615-6. [DOI] [PubMed] [Google Scholar]
  60. Metcalf D. Studies on colony formation in vitro by mouse bone marrow cells. I. Continuous cluster formation and relation of clusters to colonies. J Cell Physiol. 1969 Dec;74(3):323–332. doi: 10.1002/jcp.1040740313. [DOI] [PubMed] [Google Scholar]
  61. Miao R. M., Filedsteel A. H., Fodge D. W. Opposing effects of tumor promoters on erythroid differentiation. Nature. 1978 Jul 20;274(5668):271–272. doi: 10.1038/274271a0. [DOI] [PubMed] [Google Scholar]
  62. Mintz B., Illmensee K. Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3585–3589. doi: 10.1073/pnas.72.9.3585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Mintz U., Sachs L. Differences in inducing activity for human bone marrow colonies in normal serum and serum from patients with leukemia. Blood. 1973 Sep;42(3):331–339. [PubMed] [Google Scholar]
  64. Natvig J. B., Kunkel H. G. Human immunoglobulins: classes, subclasses, genetic variants, and idiotypes. Adv Immunol. 1973;16:1–59. doi: 10.1016/s0065-2776(08)60295-3. [DOI] [PubMed] [Google Scholar]
  65. Nudel U., Salmon J. E., Terada M., Bank A., Rifkind R. A., Marks P. A. Differential effects of chemical inducers on expression of beta globin genes in murine erythroleukemia cells. Proc Natl Acad Sci U S A. 1977 Mar;74(3):1100–1104. doi: 10.1073/pnas.74.3.1100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Oshima G., Yamada M., Sugimura T. Changes in protease during differentiation of mouse myeloid leukemia cells. Biochem Biophys Res Commun. 1979 Sep 12;90(1):158–163. doi: 10.1016/0006-291x(79)91603-6. [DOI] [PubMed] [Google Scholar]
  67. Paran M., Ichikawa Y., Sachs L. Production of the inducer for macrophage and granulocyte colonies by leukemic cells. J Cell Physiol. 1968 Dec;72(3):251–254. doi: 10.1002/jcp.1040720313. [DOI] [PubMed] [Google Scholar]
  68. Paran M., Sachs L., Barak Y., Resnitzky P. In vitro induction of granulocyte differentiation in hematopoietic cells from leukemic and non-leukemic patients. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1542–1549. doi: 10.1073/pnas.67.3.1542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Pluznik D. H., Sachs L. The cloning of normal "mast" cells in tissue culture. J Cell Physiol. 1965 Dec;66(3):319–324. doi: 10.1002/jcp.1030660309. [DOI] [PubMed] [Google Scholar]
  70. Pluznik D. H., Sachs L. The induction of clones of normal mast cells by a substance from conditioned medium. Exp Cell Res. 1966 Oct;43(3):553–563. doi: 10.1016/0014-4827(66)90026-7. [DOI] [PubMed] [Google Scholar]
  71. Potter V. R. Phenotypic diversity in experimental hepatomas: the concept of partially blocked ontogeny. The 10th Walter Hubert Lecture. Br J Cancer. 1978 Jul;38(1):1–23. doi: 10.1038/bjc.1978.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Rabinowitz Z., Sachs L. Control of the reversion of properties in transformed cells. Nature. 1970 Jan 10;225(5228):136–139. doi: 10.1038/225136a0. [DOI] [PubMed] [Google Scholar]
  73. Rabinowitz Z., Sachs L. Reversion of properties in cells transformed by polyoma virus. Nature. 1968 Dec 21;220(5173):1203–1206. doi: 10.1038/2201203a0. [DOI] [PubMed] [Google Scholar]
  74. Rabinowitz Z., Sachs L. The formation of variants with a reversion of properties of transformed cells. II. In vitro formation of variants from polyoma-transformed cells. Virology. 1969 Jun;38(2):343–346. doi: 10.1016/0042-6822(69)90376-6. [DOI] [PubMed] [Google Scholar]
  75. Rabinowitz Z., Sachs L. The formation of variants with a reversion of properties of transformed cells. V. Reversion to a limited life-span. Int J Cancer. 1970 Nov 15;6(3):388–398. doi: 10.1002/ijc.2910060309. [DOI] [PubMed] [Google Scholar]
  76. Rovera G., O'Brien T. G., Diamond L. Tumor promoters inhibit spontaneous differentiation of Friend erythroleukemia cells in culture. Proc Natl Acad Sci U S A. 1977 Jul;74(7):2894–2898. doi: 10.1073/pnas.74.7.2894. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Rovera G., Santoli D., Damsky C. Human promyelocytic leukemia cells in culture differentiate into macrophage-like cells when treated with a phorbol diester. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2779–2783. doi: 10.1073/pnas.76.6.2779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Rowley J. D. Mapping of human chromosomal regions related to neoplasia: evidence from chromosomes 1 and 17. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5729–5733. doi: 10.1073/pnas.74.12.5729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Sachs L. An analysis of the mechanism of neoplastic cell transformation by polyoma virus, hydrocarbons, and x-irradiation. Curr Top Dev Biol. 1967;2:129–150. doi: 10.1016/s0070-2153(08)60286-0. [DOI] [PubMed] [Google Scholar]
  80. Sachs L. Control of normal cell differentiation and the phenotypic reversion of malignancy in myeloid leukaemia. Nature. 1978 Aug 10;274(5671):535–539. doi: 10.1038/274535a0. [DOI] [PubMed] [Google Scholar]
  81. Sachs L. Control of normal cell differentiation in leukemia. Isr J Med Sci. 1977 Jul;13(7):654–665. [PubMed] [Google Scholar]
  82. Sachs L. Regulation of membrane changes, differentiation, and malignancy in carcinogenesis. Harvey Lect. 1974;68:1–35. [PubMed] [Google Scholar]
  83. Siden E. J., Baltimore D., Clark D., Rosenberg N. E. Immunoglobulin synthesis by lymphoid cells transformed in vitro by Abelson murine leukemia virus. Cell. 1979 Feb;16(2):389–396. doi: 10.1016/0092-8674(79)90014-x. [DOI] [PubMed] [Google Scholar]
  84. Symonds G., Sachs L. Activation of normal genes in malignant cells: activation of chemotaxis in relation to other stages of normal differentiation in myeloid leukemia. Somatic Cell Genet. 1979 Nov;5(6):931–944. doi: 10.1007/BF01542652. [DOI] [PubMed] [Google Scholar]
  85. Unkeless J. C., Kaplan G., Plutner H., Cohn Z. A. Fc-receptor variants of a mouse macrophage cell line. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1400–1404. doi: 10.1073/pnas.76.3.1400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Wang J. L., McClain D. A., Edelman G. M. Modulation of lymphocyte mitogenesis. Proc Natl Acad Sci U S A. 1975 May;72(5):1917–1921. doi: 10.1073/pnas.72.5.1917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Weinhouse S. Glycolysis, respiration, and anomalous gene expression in experimental hepatomas: G.H.A. Clowes memorial lecture. Cancer Res. 1972 Oct;32(10):2007–2016. [PubMed] [Google Scholar]
  88. Weiss B., Sachs L. Indirect induction of differentiation in myeloid leukemic cells by lipid A. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1374–1378. doi: 10.1073/pnas.75.3.1374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Wiener F., Klein G., Harris H. The analysis of malignancy by cell fusion. V. Further evidence of the ability of normal diploid cells to suppress malignancy. J Cell Sci. 1974 Jun;15(1):177–183. doi: 10.1242/jcs.15.1.177. [DOI] [PubMed] [Google Scholar]
  90. Wigler M., Weinstein I. B. Tumour promotor induces plasminogen activator. Nature. 1976 Jan 22;259(5540):232–233. doi: 10.1038/259232a0. [DOI] [PubMed] [Google Scholar]
  91. Yamamoto T., Rabinowitz Z., Sachs L. Identification of the chromosomes that control malignancy. Nat New Biol. 1973 Jun 20;243(129):247–250. doi: 10.1038/newbio243247a0. [DOI] [PubMed] [Google Scholar]
  92. Yamasaki H., Fibach E., Nudel U., Weinstein I. B., Rifkind R. A., Marks P. A. Tumor promoters inhibit spontaneous and induced differentiation of murine erythroleukemia cells in culture. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3451–3455. doi: 10.1073/pnas.74.8.3451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. de Larco J. E., Todaro G. J. Growth factors from murine sarcoma virus-transformed cells. Proc Natl Acad Sci U S A. 1978 Aug;75(8):4001–4005. doi: 10.1073/pnas.75.8.4001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. zur Hausen H., Bornkamm G. W., Schmidt R., Hecker E. Tumor initiators and promoters in the induction of Epstein-Barr virus. Proc Natl Acad Sci U S A. 1979 Feb;76(2):782–785. doi: 10.1073/pnas.76.2.782. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES