Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Nov;77(11):6359–6362. doi: 10.1073/pnas.77.11.6359

Glutathione transport by inside-out vesicles from human erythrocytes.

T Kondo, G L Dale, E Beutler
PMCID: PMC350283  PMID: 6935650

Abstract

Purified inside-out vesicles from human erythrocytes were used to investigate the active transport of oxidized glutathione (GSSG). Incubation of vesicles and GSSG in the presence of ATP resulted in the transport of GSSG into the vesicles. When vesicles were incubated with reduced glutathione (GSH), no transport was observed. At GSSG concentrations of less than 5 mM, transport was linear up to 4 hr at 37 degrees C. A Lineweaver-Burk plot of the transport rate as a function of GSSG concentration was biphasic and gave apparent Km values of 0.1 and 7.1 mM. The Km for ATP . Mg in this transport process was 0.63 mM at a GSSG concentration of 20 microM and 1.25 mM at a GSSG concentration of 5 mM. The transport rate at low GSSG concentrations was inhibited by CTP or UTP, which acted as competitive inhibitors of ATP; Ki=0.51 mM. This inhibition may account for the high erythrocyte GSH levels observed in pyrimidine-5'-nucleotidase deficiency, a disorder in which erythrocytic levels of CTP and UTP are elevated.

Full text

PDF
6359

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bannai S., Tsukeda H. The export of glutathione from human diploid cells in culture. J Biol Chem. 1979 May 10;254(9):3444–3450. [PubMed] [Google Scholar]
  2. Bartoli G. M., Sies H. Reduced and oxidized glutathione efflux from liver. FEBS Lett. 1978 Feb 1;86(1):89–91. doi: 10.1016/0014-5793(78)80105-7. [DOI] [PubMed] [Google Scholar]
  3. Beutler E., Baranko P. V., Feagler J., Matsumoto F., Miro-Quesdada M., Selby G., Singh P. Hemolytic anemia due to pyrimidine-5'-nucleotidase deficiency: report of eight cases in six families. Blood. 1980 Aug;56(2):251–255. [PubMed] [Google Scholar]
  4. Griffith O. W., Novogrodsky A., Meister A. Translocation of glutathione from lymphoid cells that have markedly different gamma-glutamyl transpeptidase activities. Proc Natl Acad Sci U S A. 1979 May;76(5):2249–2252. doi: 10.1073/pnas.76.5.2249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  6. Lunn G., Dale G. L., Beutler E. Transport accounts for glutathione turnover in human erythrocytes. Blood. 1979 Jul;54(1):238–244. [PubMed] [Google Scholar]
  7. Mollman J. E., Pleasure D. E. Calcium transport in human inside-out erythrocyte vesicles. J Biol Chem. 1980 Jan 25;255(2):569–574. [PubMed] [Google Scholar]
  8. Prchal J., Srivastava S. K., Beutler E. Active transport of GSSG from reconstituted erythrocyte ghosts. Blood. 1975 Jul;46(1):111–117. [PubMed] [Google Scholar]
  9. Srivastava S. K., Beutler E. Accurate measurement of oxidized glutathione content of human, rabbit, and rat red blood cells and tissues. Anal Biochem. 1968 Oct 24;25(1):70–76. doi: 10.1016/0003-2697(68)90082-1. [DOI] [PubMed] [Google Scholar]
  10. Srivastava S. K., Beutler E. Permeability of normal and cataractous rabbit lenses to glutathione. Proc Soc Exp Biol Med. 1968 Feb;127(2):512–514. doi: 10.3181/00379727-127-32727. [DOI] [PubMed] [Google Scholar]
  11. Srivastava S. K., Beutler E. The transport of oxidized glutathione from human erythrocytes. J Biol Chem. 1969 Jan 10;244(1):9–16. [PubMed] [Google Scholar]
  12. Steck T. L., Kant J. A. Preparation of impermeable ghosts and inside-out vesicles from human erythrocyte membranes. Methods Enzymol. 1974;31:172–180. doi: 10.1016/0076-6879(74)31019-1. [DOI] [PubMed] [Google Scholar]
  13. Steck T. L., Weinstein R. S., Straus J. H., Wallach D. F. Inside-out red cell membrane vesicles: preparation and purification. Science. 1970 Apr 10;168(3928):255–257. doi: 10.1126/science.168.3928.255. [DOI] [PubMed] [Google Scholar]
  14. Sze H., Solomon A. K. Permeability of human erythrocyte membrane vesicles to alkali cations. Biochim Biophys Acta. 1979 Feb 2;550(3):393–406. doi: 10.1016/0005-2736(79)90144-5. [DOI] [PubMed] [Google Scholar]
  15. Torrance J. D., Whittaker D. Distribution of erythrocyte nucleotides in pyrimidine 5'-nucleotidase deficiency. Br J Haematol. 1979 Nov;43(3):423–434. doi: 10.1111/j.1365-2141.1979.tb03769.x. [DOI] [PubMed] [Google Scholar]
  16. Valentine W. N., Fink K., Paglia D. E., Harris S. R., Adams W. S. Hereditary hemolytic anemia with human erythrocyte pyrimidine 5'-nucleotidase deficiency. J Clin Invest. 1974 Oct;54(4):866–879. doi: 10.1172/JCI107826. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES