Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Nov;77(11):6391–6395. doi: 10.1073/pnas.77.11.6391

Ion-transport chain of cytochrome oxidase: the two chain-direct coupling principle of energy coupling.

M Fry, D E Green
PMCID: PMC350290  PMID: 6256734

Abstract

Cytochrome oxidase (ferrocytochrome c:oxygen oxidoreductase, EC 1.9.3.1) couples the aerobic oxidation of ferrocytochrome c to the cyclical transport of monovalent cations or to the active transport of monovalent and divalent cations. This transport capability is mediated by an intracomplex ion-transport chain of two protein-bound molecules of cardiolipin per molecule of cytochrome oxidase. Cardiolipin in a two-phase system shows the identical ionophoric pattern as does the cytochrome oxidase coupled system. A molecular model of the cardiolipin chain suggests the possibility of a cage-like structure through which cations can be transferred from phosphate group to phosphate group. The ion-transport chain and the electron-transport chain are anchored to the same set of subunits (I+IV); the close proximity of the two chains argues for the direct coupling of electron and cation flow. The ion-transport chain of cytochrome oxidase provides an introduction to the molecular mechanisms by which ions are moved across membranes in energy-coupling systems.

Full text

PDF
6391

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRIERLEY G. P., MEROLA A. J. Studies of the electrontransfer system. 48. Phospholipid requirements in cytochrome oxidase. Biochim Biophys Acta. 1962 Oct 22;64:205–217. doi: 10.1016/0006-3002(62)90732-1. [DOI] [PubMed] [Google Scholar]
  2. FLEISCHER S., BRIERLEY G., KLOUWEN H., SLAUTTERBACK D. B. Studies of the electron transfer system. 47. The role of phospholipids in electron transfer. J Biol Chem. 1962 Oct;237:3264–3272. [PubMed] [Google Scholar]
  3. Fry M., Green D. E. Cardiolipin requirement by cytochrome oxidase and the catalytic role of phospholipid. Biochem Biophys Res Commun. 1980 Apr 29;93(4):1238–1246. doi: 10.1016/0006-291x(80)90622-1. [DOI] [PubMed] [Google Scholar]
  4. Fry M., Green D. E. Energized transport of cations by cytochrome oxidase. Biochem Biophys Res Commun. 1980 Aug 29;95(4):1529–1535. doi: 10.1016/s0006-291x(80)80071-4. [DOI] [PubMed] [Google Scholar]
  5. Fry M., Vande Zande H., Green D. E. Resolution of cytochrome oxidase into two component complexes. Proc Natl Acad Sci U S A. 1978 Dec;75(12):5908–5911. doi: 10.1073/pnas.75.12.5908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Green D. E., Blondin G. A. Molecular mechanism of mitochondrial energy coupling. Bioscience. 1978 Jan;28(1):18–24. [PubMed] [Google Scholar]
  7. Green D. E., Fry M. On reagents that convert cytochrome oxidase from an inactive to an active coupling state. Proc Natl Acad Sci U S A. 1980 Apr;77(4):1951–1955. doi: 10.1073/pnas.77.4.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Mitchell P. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev Camb Philos Soc. 1966 Aug;41(3):445–502. doi: 10.1111/j.1469-185x.1966.tb01501.x. [DOI] [PubMed] [Google Scholar]
  9. Robinson N. C., Strey F., Talbert L. Investigation of the essential boundary layer phospholipids of cytochrome c oxidase using Triton X-100 delipidation. Biochemistry. 1980 Aug 5;19(16):3656–3661. doi: 10.1021/bi00557a003. [DOI] [PubMed] [Google Scholar]
  10. Shamoo A. E., Scott T. L., Ryan T. E. Active calcium treatment transport via coupling between the enzymatic and the ionophoric sites of Ca2+ + Mg2+-ATPase. J Supramol Struct. 1977;6(3):345–353. doi: 10.1002/jss.400060307. [DOI] [PubMed] [Google Scholar]
  11. Tyson C. A., Vande Zande H., Green D. E. Phospholipids as ionophores. J Biol Chem. 1976 Mar 10;251(5):1326–1332. [PubMed] [Google Scholar]
  12. Tzagoloff A., MacLennan D. H., McConnell D. G., Green D. E. Studies on the electron transfer system. 68. Formation of membranes as the basis of the reconstitution of the mitochondrial electron transfer system. J Biol Chem. 1967 May 10;242(9):2051–2061. [PubMed] [Google Scholar]
  13. Urry D. W. The gramicidin A transmembrane channel: a proposed pi(L,D) helix. Proc Natl Acad Sci U S A. 1971 Mar;68(3):672–676. doi: 10.1073/pnas.68.3.672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Vande Zande H. U., Skopp R., Fry M. Intrinsic coupling in cytochrome oxidase: nature and stoichiometry of the coupling reactions. Biochem Biophys Res Commun. 1980 Aug 29;95(4):1522–1528. doi: 10.1016/s0006-291x(80)80070-2. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES