Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Nov;77(11):6551–6555. doi: 10.1073/pnas.77.11.6551

Evidence for a 3-O-sulfated D-glucosamine residue in the antithrombin-binding sequence of heparin.

U Lindahl, G Bäckström, L Thunberg, I G Leder
PMCID: PMC350323  PMID: 6935668

Abstract

An octasaccharide with high affinity for antithrombin was isolated after partial deaminative cleavage of heparin with nitrous acid. After conversion of the 2,5-anhydro-D-mannose end group to anhydro[1-3H]mannitol, labeled pentasaccharide was released from the octasaccharide by periodate-alkali treatment. Incubation of the pentasaccharide with a recently discovered 3,O-sulfatase from human urine resulted in desulfation, suggesting the occurrence of a 3-sulfate group on the terminal glucosamine residue. The same glucosamine residue was recovered as a 2,5-anhydro[1-3H]mannitol derivative by a procedure involving deamination of the octasaccharide with nitrous acid, reduction of the products with sodium boro[3H]hydride, isolation of 3H-labeled tetrasaccharide by gel chromatography, and release of the labeled end-group by periodate-alkali treatment. Paper electrophoresis indicated disulfated anhydro[3H]mannitol, presumably sulfated at C3 and C6, as a major component, along with smaller amounts of monosulfated (presumably 3-sulfated) anhydro[3H]mannitol. Similar treatment of an analogous tetrasaccharide derived from heparin with low affinity for antithrombin failed to produce any disulfated anhydromannitol. These results suggest that 3-sulfated glucosamine is a unique component of high-affinity heparin, located at a specific position in the antithrombin-binding sequence of the molecule.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson L. O., Barrowcliffe T. W., Holmer E., Johnson E. A., Sims G. E. Anticoagulant properties of heparin fractionated by affinity chromatography on matrix-bound antithrombin iii and by gel filtration. Thromb Res. 1976 Dec;9(6):575–583. doi: 10.1016/0049-3848(76)90105-5. [DOI] [PubMed] [Google Scholar]
  2. Danishefsky I., Steiner H., Bella A., Jr, Friedlander A. Investigations on the chemistry of heparin. VI. Position of the sulfate ester groups. J Biol Chem. 1969 Apr 10;244(7):1741–1745. [PubMed] [Google Scholar]
  3. Hök M., Björk I., Hopwood J., Lindahl U. Anticoagulant activity of heparin: separation of high-activity and low-activity heparin species by affinity chromatography on immobilized antithrombin. FEBS Lett. 1976 Jul 1;66(1):90–93. doi: 10.1016/0014-5793(76)80592-3. [DOI] [PubMed] [Google Scholar]
  4. Jacobsson I., Hök M., Pettersson I., Lindahl U., Larm O., Wirén E., von Figura K. Identification of N-sulphated disaccharide units in heparin-like polysaccharides. Biochem J. 1979 Apr 1;179(1):77–87. doi: 10.1042/bj1790077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Jacobsson I., Lindahl U. Biosynthesis of heparin. Concerted action of late polymer-modification reactions. J Biol Chem. 1980 Jun 10;255(11):5094–5100. [PubMed] [Google Scholar]
  6. Lam L. H., Silbert J. E., Rosenberg R. D. The separation of active and inactive forms of heparin. Biochem Biophys Res Commun. 1976 Mar 22;69(2):570–577. doi: 10.1016/0006-291x(76)90558-1. [DOI] [PubMed] [Google Scholar]
  7. Leder I. G. A novel 3-O sulfatase from human urine acting on methyl-2-deoxy-2-sulfamino-alphs-D-glucopyranoside 3-sulfate. Biochem Biophys Res Commun. 1980 Jun 30;94(4):1183–1189. doi: 10.1016/0006-291x(80)90544-6. [DOI] [PubMed] [Google Scholar]
  8. Lindahl U., Bäckström G., Hök M., Thunberg L., Fransson L. A., Linker A. Structure of the antithrombin-binding site in heparin. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3198–3202. doi: 10.1073/pnas.76.7.3198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lindahl U., Jacobsson I., Hök M., Backström G., Feingold D. S. Biosynthesis of heparin. Loss of C-5 hydrogen during conversion of D-glucuronic to L-iduronic acid residues. Biochem Biophys Res Commun. 1976 May 17;70(2):492–499. doi: 10.1016/0006-291x(76)91073-1. [DOI] [PubMed] [Google Scholar]
  10. Nagasawa K., Inoue Y., Kamata T. Solvolytic desulfation of glycosaminoglycuronan sulfates with dimethyl sulfoxide containing water or methanol. Carbohydr Res. 1977 Sep;58(1):47–55. doi: 10.1016/s0008-6215(00)83402-3. [DOI] [PubMed] [Google Scholar]
  11. Rosenberg R. D. Chemistry of the hemostatic mechanism and its relationship to the action of heparin. Fed Proc. 1977 Jan;36(1):10–18. [PubMed] [Google Scholar]
  12. Rosenberg R. D., Lam L. Correlation between structure and function of heparin. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1218–1222. doi: 10.1073/pnas.76.3.1218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Shively J. E., Conrad H. E. Formation of anhydrosugars in the chemical depolymerization of heparin. Biochemistry. 1976 Sep 7;15(18):3932–3942. doi: 10.1021/bi00663a005. [DOI] [PubMed] [Google Scholar]
  14. Thunberg L., Bäckström G., Grundberg H., Riesenfeld J., Lindahl U. The molecular size of the antithrombin-binding sequence in heparin. FEBS Lett. 1980 Aug 11;117(1):203–206. doi: 10.1016/0014-5793(80)80945-8. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES