Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Nov;77(11):6856–6859. doi: 10.1073/pnas.77.11.6856

Localization of anti-mitochondrial antibody in experimental canine myocardial infarcts.

J T Willerson, P Kulkarni, M Stone, S E Lewis, E Eigenbrodt, F J Bonte, R W Parkey, L M Buja
PMCID: PMC350389  PMID: 6935688

Abstract

Alterations in cell and subcellular membrane integrity occur during evolving ischemic myocardial injury. We tested the hypothesis that an antibody against human liver mitochondria [anti-mitochondrial antibody developing in a patient with primary biliary cirrhosis] could identify altered cell membrane integrity in experimental canine myocardial infarcts. The proximal left anterior descending coronary arteries of 12 dogs were ligated and 1 hr later 131I-labeled F(ab')2 fragments from either a control human IgG (6 dogs) or anti-mitochondrial IgG (6 dogs) were injected. The 131I-labeled F(ab')2 anti-mitochondrial fragments concentrated maximally in the central infarct subendocardium [infarct-to-normal ratio of 9.2 +/- 3.5 (mean +/- SD) vs. 4.6 +/- 3.3 for control F(ab')2 IgG, P < 0.05]. There was also 1 1/2- to 2-fold greater anti-mitochondrial antibody F(ab')2 accumulation in the central infarct epicardium and the peripheral infarct subendocardium and subepicardium. Thus, an anti-mitochondrial antibody obtained from a patient with primary biliary cirrhosis concentrates in irreversibly damaged myocardium after experimental canine myocardial infarction. Presumably this occurs because of altered cell membrane integrity, which allows exposure of mitochondria to the anti-mitochondrial antibody. The F(ab')2 fragments of anti-mitochondrial antibodies labeled with suitable radionuclides should allow noninvasive scintigraphic detection of experimental acute myocardial infarcts.

Full text

PDF
6856

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beller G. A., Khaw B. A., Haber E., Smith T. W. Localization of radiolabeled cardiac myosin-specific antibody in myocardial infarcts. Comparison with technetium-99m stannous pyrophosphate. Circulation. 1977 Jan;55(1):74–78. doi: 10.1161/01.cir.55.1.74. [DOI] [PubMed] [Google Scholar]
  2. Bonte F. J., Parkey R. W., Graham K. D., Moore J., Stokely E. M. A new method for radionuclide imaging of myocardial infarcts. Radiology. 1974 Feb;110(2):473–474. doi: 10.1148/110.2.473. [DOI] [PubMed] [Google Scholar]
  3. Buja L. M., Parkey R. W., Stokely E. M., Bonte F. J., Willerson J. T. Pathophysiology of technetium-99m stannous pyrophosphate and thallium-201 scintigraphy of acute anterior myocardial infarcts in dogs. J Clin Invest. 1976 Jun;57(6):1508–1522. doi: 10.1172/JCI108421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Buja L. M., Tofe A. J., Kulkarni P. V., Mukherjee A., Parkey R. W., Francis M. D., Bonte F. J., Willerson J. T. Sites and mechanisms of localization of technetium-99m phosphorus radiopharmaceuticals in acute myocardial infarcts and other tissues. J Clin Invest. 1977 Sep;60(3):724–740. doi: 10.1172/JCI108825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burton K. P., Hagler H. K., Templeton G. H., Willerson J. T., Buja L. M. Lanthanum probe studies of cellular pathophysiology induced by hypoxia in isolated cardiac muscle. J Clin Invest. 1977 Dec;60(6):1289–1302. doi: 10.1172/JCI108888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burton K. P., Templeton G. H., Hagler H. K., Willerson J. T., Buja L. M. Effect of glucose availability on functional membrane integrity, ultrastructure and contractile performance following hypoxia and reoxygenation in isolated feline cardiac muscle. J Mol Cell Cardiol. 1980 Jan;12(1):109–133. doi: 10.1016/0022-2828(80)90114-5. [DOI] [PubMed] [Google Scholar]
  7. Holman B. L., Lesch M., Zweiman F. G., Temte J., Lown B., Gorlin R. Detection and sizing of acute myocardial infarcts with 99mTc (Sn) tetracycline. N Engl J Med. 1974 Jul 25;291(4):159–163. doi: 10.1056/NEJM197407252910401. [DOI] [PubMed] [Google Scholar]
  8. Khaw B. A., Beller G. A., Haber E., Smith T. W. Localization of cardiac myosin-specific antibody in myocardial infarction. J Clin Invest. 1976 Aug;58(2):439–446. doi: 10.1172/JCI108488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kloner R. A., Ganote C. E., Whalen D. A., Jr, Jennings R. B. Effect of a transient period of ischemia on myocardial cells. II. Fine structure during the first few minutes of reflow. Am J Pathol. 1974 Mar;74(3):399–422. [PMC free article] [PubMed] [Google Scholar]
  10. Kulkarni P. V., Parkey R. W., Wilson J. E., 3rd, Lewis S. E., Buja L. M., Bonte F. J., Willerson J. T. Modified technetium-99m heparin for the imaging of acute experimental myocardial infarcts. J Nucl Med. 1980 Feb;21(2):117–121. [PubMed] [Google Scholar]
  11. Leaf A. Regulation of intracellular fluid volume and disease. Am J Med. 1970 Sep;49(3):291–295. doi: 10.1016/s0002-9343(70)80019-5. [DOI] [PubMed] [Google Scholar]
  12. MCFARLANE A. S. Labelling of plasma proteins with radioactive iodine. Biochem J. 1956 Jan;62(1):135–143. doi: 10.1042/bj0620135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Parkey R. W., Bonte F. J., Meyer S. L., Atkins J. M., Curry G. L., Stokely E. M., Willerson J. T. A new method for radionuclide imaging of acute myocardial infarction in humans. Circulation. 1974 Sep;50(3):540–546. doi: 10.1161/01.cir.50.3.540. [DOI] [PubMed] [Google Scholar]
  14. Powell W. J., Jr, DiBona D. R., Flores J., Leaf A. The protective effect of hyperosmotic mannitol in myocardial ischemia and necrosis. Circulation. 1976 Oct;54(4):603–615. doi: 10.1161/01.cir.54.4.603. [DOI] [PubMed] [Google Scholar]
  15. Rossman D. J., Strauss H. W., Siegel M. E., Pitt B. Accumulation of 99mTc-glucoheptonate in acutely infarcted myocardium. J Nucl Med. 1975 Oct;16(10):875–878. [PubMed] [Google Scholar]
  16. Trump B. F., Berezesky I. K., Collan Y., Kahng M. W., Mergner W. J. Recent studies on the pathophysiology of ischemic cell injury. Beitr Pathol. 1976 Sep;158(4):363–388. doi: 10.1016/s0005-8165(76)80135-7. [DOI] [PubMed] [Google Scholar]
  17. Whalen D. A., Jr, Hamilton D. G., Ganote C. E., Jennings R. B. Effect of a transient period of ischemia on myocardial cells. I. Effects on cell volume regulation. Am J Pathol. 1974 Mar;74(3):381–397. [PMC free article] [PubMed] [Google Scholar]
  18. Willerson J. T., Parkey R. W., Bonte F. J., Meyer S. L., Atkins J. M., Stokley E. M. Technetium stannous pyrophosphate myocardial scintigrams in patients with chest pain of varying etiology. Circulation. 1975 Jun;51(6):1046–1052. doi: 10.1161/01.cir.51.6.1046. [DOI] [PubMed] [Google Scholar]
  19. Willerson J. T., Scales F., Mukherjee A., Platt M., Templeton G. H., Fink G. S., Buja L. M. Abnormal myocardial fluid retention as an early manifestation of ischemic injury. Am J Pathol. 1977 Apr;87(1):159–188. [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES