Abstract
After pretreatment of rat brain synaptic membranes with adenosine deaminase to remove endogenous adenosine, 2-chloro[3H]adenosine, a stable analog of adenosine, binds to two sites with Kd values of 1.3 and 16 nM and corresponding Bmax values of 207 and 380 fmol/mg of protein. Binding is reversible, and the highest density of sites occurs in enriched synaptosomal fractions. In peripheral tissue, negligible binding is observed in heart, kidney, and liver, while testicle has 11 fmol of binding sites/mg of protein. In brain, caudate and hippocampus have the highest density of sites, and spinal cord and hypothalamus have the lowest. This high-affinity binding is stereospecific; the L diasteromer of N6-phenylisopropyladenosine is approximately 30-times more potent as a displacer of 2-chloro[3H]adenosine than the D isomer and is also sensitive to theophylline (IC50 = 8.8 microM) and other purine-related compounds. Several putative neurotransmitters, neurotransmitter antagonists, and other centrally active compounds have no effect on binding. The data are consistent with the hypothesis that 2-chloro[3H]adenosine is binding to central purinergic receptors.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson F. S., Murphy R. C. Isocratic separation of some purine nucleotide, nucleoside, and base metabolites from biological extracts by high-performance liquid chromatography. J Chromatogr. 1976 Jun 23;121(2):251–262. doi: 10.1016/s0021-9673(00)85021-9. [DOI] [PubMed] [Google Scholar]
- Arch J. R., Newsholme E. A. The control of the metabolism and the hormonal role of adenosine. Essays Biochem. 1978;14:82–123. [PubMed] [Google Scholar]
- Cuatrecasas P., Hollenberg M. D. Membrane receptors and hormone action. Adv Protein Chem. 1976;30:251–451. doi: 10.1016/s0065-3233(08)60481-7. [DOI] [PubMed] [Google Scholar]
- Dunwiddie T. V., Hoffer B. J. Adenine nucleotides and synaptic transmission in the in vitro rat hippocampus. Br J Pharmacol. 1980 May;69(1):59–68. doi: 10.1111/j.1476-5381.1980.tb10883.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glowinski J., Iversen L. L. Regional studies of catecholamines in the rat brain. I. The disposition of [3H]norepinephrine, [3H]dopamine and [3H]dopa in various regions of the brain. J Neurochem. 1966 Aug;13(8):655–669. doi: 10.1111/j.1471-4159.1966.tb09873.x. [DOI] [PubMed] [Google Scholar]
- Haulică I., Ababei L., Brănişteanu D., Topoliceanu F. Letter: Preliminary data on the possible hypnogenic role of adenosine. J Neurochem. 1973 Oct;21(4):1019–1020. doi: 10.1111/j.1471-4159.1973.tb07549.x. [DOI] [PubMed] [Google Scholar]
- Huang M., Daly J. W. Adenosine-elicited accumulation of cyclic AMP in brain slices: potentiation by agents which inhibit uptake of adenosine. Life Sci. 1974 Feb 1;14(3):489–503. doi: 10.1016/0024-3205(74)90364-6. [DOI] [PubMed] [Google Scholar]
- Jhamandas K., Sawynok J., Sutak M. Antagonism of morphine action on brain acetylcholine release by methylxanthines and calcium. Eur J Pharmacol. 1978 Jun 1;49(3):309–312. doi: 10.1016/0014-2999(78)90108-5. [DOI] [PubMed] [Google Scholar]
- Kitabgi P., Carraway R., Van Rietschoten J., Granier C., Morgat J. L., Menez A., Leeman S., Freychet P. Neurotensin: specific binding to synaptic membranes from rat brain. Proc Natl Acad Sci U S A. 1977 May;74(5):1846–1850. doi: 10.1073/pnas.74.5.1846. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuroda Y. Physiological roles of adenosine derivatives which are released during neurotransmission in mammalian brain. J Physiol (Paris) 1978;74(5):463–470. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Londos C., Cooper D. M., Wolff J. Subclasses of external adenosine receptors. Proc Natl Acad Sci U S A. 1980 May;77(5):2551–2554. doi: 10.1073/pnas.77.5.2551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mah H. D., Daly J. W. Adenosine-dependent formation of cyclic AMP in brain slices. Pharmacol Res Commun. 1976 Feb;8(1):65–79. doi: 10.1016/0031-6989(76)90030-8. [DOI] [PubMed] [Google Scholar]
- Maitre M., Chesielski L., Lehmann A., Kempf E., Mandel P. Protective effect of adenosine and nicotinamide against audiogenic seizure. Biochem Pharmacol. 1974 Oct 15;23(20):2807–2816. doi: 10.1016/0006-2952(74)90054-9. [DOI] [PubMed] [Google Scholar]
- Marley E., Nistico G. Effects of catecholamines and adenosine derivatives given into the brain of fowls. Br J Pharmacol. 1972 Dec;46(4):619–636. doi: 10.1111/j.1476-5381.1972.tb06888.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Michaelis M. L., Michaelis E. K., Myers S. L. Adenosine modulation of synaptosomal dopamine release. Life Sci. 1979 May 28;24(22):2083–2092. doi: 10.1016/0024-3205(79)90082-1. [DOI] [PubMed] [Google Scholar]
- Miyamota M. D., Breckenridge B. M. A cyclic adenosine monophosphate link in the catecholamine enhancement of transmitter release at the neuromuscular junction. J Gen Physiol. 1974 May;63(5):609–624. doi: 10.1085/jgp.63.5.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Newman M. E., De Lucia R., Patel J., McIlwain H. Adenosine-binding to cerebral preparations in interpretation of adenosine activation of adenosine 3':5'-cyclic monophosphate formation [proceedings]. Biochem Soc Trans. 1980 Feb;8(1):141–142. doi: 10.1042/bst0080141. [DOI] [PubMed] [Google Scholar]
- Phillis J. W., Edstrom J. P., Kostopoulos G. K., Kirkpatrick J. R. Effects of adenosine and adenine nucleotides on synaptic transmission in the cerebral cortex. Can J Physiol Pharmacol. 1979 Nov;57(11):1289–1312. doi: 10.1139/y79-194. [DOI] [PubMed] [Google Scholar]
- Prémont J., Perez M., Bockaert J. Adenosine-sensitive adenylate cyclase in rat striatal homogenates and its relationship to dopamine- and Ca2+-sensitive adenylate cyclases. Mol Pharmacol. 1977 Jul;13(4):662–670. [PubMed] [Google Scholar]
- Pull I., McIlwain H. Adenine derivatives as neurohumoral agents in the brain. The quantities liberated on excitation of superfused cerebral tissues. Biochem J. 1972 Dec;130(4):975–981. doi: 10.1042/bj1300975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pull I., McIlwain H. Rat cerebral-cortex adenosine deaminase activity and its subcellular distribution. Biochem J. 1974 Oct;144(1):37–41. doi: 10.1042/bj1440037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sattin A., Rall T. W. The effect of adenosine and adenine nucleotides on the cyclic adenosine 3', 5'-phosphate content of guinea pig cerebral cortex slices. Mol Pharmacol. 1970 Jan;6(1):13–23. [PubMed] [Google Scholar]
- Schwabe U., Kiffe H., Puchstein C., Trost T. Specific binding of 3H-adenosine to rat brain membranes. Naunyn Schmiedebergs Arch Pharmacol. 1979 Dec;310(1):59–67. doi: 10.1007/BF00499875. [DOI] [PubMed] [Google Scholar]
- Smellie F. W., Daly J. W., Dunwiddie T. V., Hoffer B. J. The dextro and levorotatory isomers of N-phenylisopropyladenosine: stereospecific effects on cyclic AMP-formation and evoked synaptic responses in brain slices. Life Sci. 1979 Nov 12;25(20):1739–1748. doi: 10.1016/0024-3205(79)90477-6. [DOI] [PubMed] [Google Scholar]
- Smellie F. W., Davis C. W., Daly J. W., Wells J. N. Alkylxanthines: inhibition of adenosine-elicited accumulation of cyclic AMP in brain slices and of brain phosphodiesterase activity. Life Sci. 1979 Jun 25;24(26):2475–2482. doi: 10.1016/0024-3205(79)90458-2. [DOI] [PubMed] [Google Scholar]
- Stone T. W., Taylor D. A. Clonidine as an adenosine antagonist. J Pharm Pharmacol. 1978 Dec;30(12):792–793. doi: 10.1111/j.2042-7158.1978.tb13395.x. [DOI] [PubMed] [Google Scholar]
- Thithapandha A., Maling H. M., Gillette J. R. Effects of caffeine and theophylline on activity of rats in relation to brain xanthine concentrations. Proc Soc Exp Biol Med. 1972 Feb;139(2):582–586. doi: 10.3181/00379727-139-36191. [DOI] [PubMed] [Google Scholar]
- Vapaatalo H., Onken D., Neuvonen P. J., Westermann E. Stereospecificity in some central and circulatory effects of phenylisopropyl-adenosine (PIA). Arzneimittelforschung. 1975 Mar;25(3):407–410. [PubMed] [Google Scholar]
- White T. D. Release of ATP from a synaptosomal preparation by elevated extracellular K+ and by veratridine. J Neurochem. 1978 Feb;30(2):329–336. doi: 10.1111/j.1471-4159.1978.tb06534.x. [DOI] [PubMed] [Google Scholar]
- Williams M., Risley E. A. Characterization of the binding of [3H]muscimol, a potent gamma-aminobutyric acid agonist, to rat brain synaptosomal membranes using a filtration assay. J Neurochem. 1979 Mar;32(3):713–718. doi: 10.1111/j.1471-4159.1979.tb04553.x. [DOI] [PubMed] [Google Scholar]
- Wu P. H., Phillis J. W., Balls K., Rinaldi B. Specific binding of 2-[3H]chloroadenosine to rat brain cortical membranes. Can J Physiol Pharmacol. 1980 May;58(5):576–579. doi: 10.1139/y80-096. [DOI] [PubMed] [Google Scholar]
- van Calker D., Müller M., Hamprecht B. Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J Neurochem. 1979 Nov;33(5):999–1005. doi: 10.1111/j.1471-4159.1979.tb05236.x. [DOI] [PubMed] [Google Scholar]