Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Dec;77(12):7064–7068. doi: 10.1073/pnas.77.12.7064

Affinity labeling of rat liver thyroid hormone nuclear receptor.

V M Nikodem, S Y Cheng, J E Rall
PMCID: PMC350441  PMID: 6261237

Abstract

The thyroid hormone receptor from rat liver nuclei has been covalently labeled with the N-bromoacetyl derivatives of L-thyroxine (T4) and 3,3',5-triiodo-L-thyronine (T3). Displacement binding studies showed that, in the presence of 100-fold molar excess of unlabeled N-bromoacetyl-T3 or T4, binding of [125I]T3 or [125I]T4 was nearly totally inhibited. Heat inactivation of the receptor (55 degrees C for 15 min) resulted in parallel losses in the binding of T3 (95%) and N-bromoacetyl-T3 (93%). These results indicated that T3 and T4 and their bromoacetyl derivatives compete for the same binding site. The nuclear receptor showed identical behavior in high-pressure liquid chromatography (HPLC) whether bound to T3 or T4 or covalently labeled with their bromoacetyl derivatives. HPLC provided a single-step 100-fold purification of the nuclear receptor. Na-DodSO4 gel electrophoresis of the nuclear receptor labeled with N-bromoacetyl derivatives of [125I]T3 or [125I]T4 showed one major radioactive component with a molecular weight of 56,000. Furthermore, in the absence of denaturant, the nuclear receptor either bound to [125I]T3 or covalently labeled with N-bromoacetyl-[125I]T3 showed identical mobility. These results suggested that the nuclear receptor is a single polypeptide chain and binds either T3 or T4. Nuclear receptors covalently linked with N-bromoacetyl derivatives of [125I]T3 or [125I]T4 may be useful as a marker for the preparative purification of receptor.

Full text

PDF
7064

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cheng S. Y. Labeling of serum prealbumin with N-bromoacetyl-L-thyroxine. Methods Enzymol. 1977;46:435–441. doi: 10.1016/s0076-6879(77)46052-x. [DOI] [PubMed] [Google Scholar]
  2. Degroot L. J., Refetoff S., Strausser J., Barsano C. Nuclear triiodothyronine-binding protein: partial characterization and binding to chromatin. Proc Natl Acad Sci U S A. 1974 Oct;71(10):4042–4046. doi: 10.1073/pnas.71.10.4042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Eberhardt N. L., Ring J. C., Johnson L. K., Latham K. R., Apriletti J. W., Kitsis R. N., Baxter J. D. Regulation of activity of chromatin receptors for thyroid hormone: possible involvement of histone-like proteins. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5005–5009. doi: 10.1073/pnas.76.10.5005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Eberhardt N. L., Ring J. C., Latham K. R., Baxter J. D. Thyroid hormone receptors. Alteration of hormone-binding specificity. J Biol Chem. 1979 Sep 10;254(17):8534–8539. [PubMed] [Google Scholar]
  5. Kurtz D. T., Sippel A. E., Feigelson P. Effect of thyroid hormones on the level of the hepatic mRNA for alpha2u globulin. Biochemistry. 1976 Mar 9;15(5):1031–1036. doi: 10.1021/bi00650a013. [DOI] [PubMed] [Google Scholar]
  6. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  7. Latham K. R., Ring J. C., Baxter J. D. Solubilized nuclear "receptors" for thyroid hormones. Physical characteristics and binding properties, evidence for multiple forms. J Biol Chem. 1976 Dec 10;251(23):7388–7397. [PubMed] [Google Scholar]
  8. Martial J. A., Baxter J. D., Goodman H. M., Seeburg P. H. Regulation of growth hormone messenger RNA by thyroid and glucocorticoid hormones. Proc Natl Acad Sci U S A. 1977 May;74(5):1816–1820. doi: 10.1073/pnas.74.5.1816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Oppenheimer J. H., Schwartz H. L., Surks M. I. Tissue differences in the concentration of triiodothyronine nuclear binding sites in the rat: liver, kidney, pituitary, heart, brain, spleen, and testis. Endocrinology. 1974 Sep;95(3):897–903. doi: 10.1210/endo-95-3-897. [DOI] [PubMed] [Google Scholar]
  10. Oppenheimer J. H. Thyroid hormone action at the cellular level. Science. 1979 Mar 9;203(4384):971–979. doi: 10.1126/science.218285. [DOI] [PubMed] [Google Scholar]
  11. Roy A. K., Schiop M. J., Dowbenko D. J. The role of thyroxine in the regulation of translatable messenger RNA for alpha2u globulin in rat liver. FEBS Lett. 1976 May 1;64(2):396–399. doi: 10.1016/0014-5793(76)80335-3. [DOI] [PubMed] [Google Scholar]
  12. Surks M. I., Koerner D., Dillman W., Oppenheimer J. H. Limited capacity binding sites for L-triiodothyronine in rat liver nuclei. Localization to the chromatin and partial characterization of the L-triiodothyronine-chromatin complex. J Biol Chem. 1973 Oct 25;248(20):7066–7072. [PubMed] [Google Scholar]
  13. Surks M. I., Oppenheimer J. H. Concentration of L-thyroxine and L-triiodothyronine specifically bound to nuclear receptors in rat liver and kidney. Quantitative evidence favoring a major role of T3 in thyroid hormone action. J Clin Invest. 1977 Sep;60(3):555–562. doi: 10.1172/JCI108807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Torresani J., DeGroot L. J. Triiodothyronine binding to liver nuclear solubilized proteins in vitro. Endocrinology. 1975 May;96(5):1201–1209. doi: 10.1210/endo-96-5-1201. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES