Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Dec;77(12):7218–7221. doi: 10.1073/pnas.77.12.7218

Electron tunneling process and the segment mobility of macromolecules.

D S Chernavskii, E N Frolov, V I Goldanskii, A A Kononenko, A B Rubin
PMCID: PMC350473  PMID: 6938968

Abstract

New experimental data [Berg, A. I., Noks, P. P., Kononenko, A. A., Frolov, E. N., Khrymova, I. N., Rubin A. B., Likhtenstein, G. I., Goldanskii, V. I., Parak, F., Bukl, M. & Mössbauer, R. (1979) Mol. Biol. (USSR) 13, 81-89; Berg, A. I., Noks, P. P., Kononenko, A. A., Frolov, E. N., Uspenskaya, N. Y., Khrymova, I. N., Rubin, A. B., Likhtenstein, G. I. & Hideg, K. (1979) Mol. Biol (USSR) 13, 469-477] provide evidence that the electron tunneling process is connected to a special type of conformational transition (segmental transition) protein macromolecules in photosynthetic membranes. This problem is investigated with a simple mechanical model. It is shown that the segmental degree of freedom can play the role of the strongly interacting accepting mode for the electron tunneling process. The temperature dependences of the electron tunneling rate and the recoilless gamma-ray absorption of membrane-bound 57Fe, as an indicator of the intramolecular mobility, are calculated. The problem of energy storage in proteins is also discussed.

Full text

PDF
7218

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blumenfeld L. A., Chernavskii D. S. Tunnelling of electrons in biological processes. J Theor Biol. 1973 Apr;39(1):1–7. doi: 10.1016/0022-5193(73)90201-4. [DOI] [PubMed] [Google Scholar]
  2. Blumenfeld L. A. The physical aspects of energy transduction in biological systems. Q Rev Biophys. 1978 Aug;11(3):251–308. doi: 10.1017/s0033583500002286. [DOI] [PubMed] [Google Scholar]
  3. Cartling B., Ehrenberg A. A molecular mechanism of the energetic coupling of a sequence of electron transfer reactions to endergonic reactions. Biophys J. 1978 Sep;23(3):451–461. doi: 10.1016/S0006-3495(78)85461-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DeVault D., Chance B. Studies of photosynthesis using a pulsed laser. I. Temperature dependence of cytochrome oxidation rate in chromatium. Evidence for tunneling. Biophys J. 1966 Nov;6(6):825–847. doi: 10.1016/s0006-3495(66)86698-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Grigorov L. N., Chernavskii D. S. Kvantovo-mekhanicheskaia model' perenosa élektrona ot tsitokhroma k khlorofillu v fotosinteze. Biofizika. 1972 Mar-Apr;17(2):195–202. [PubMed] [Google Scholar]
  6. Hales B. J. Temperature dependency of the rate of electron transport as a monitor of protein motion. Biophys J. 1976 May;16(5):471–480. doi: 10.1016/S0006-3495(76)85702-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hopfield J. J. Electron transfer between biological molecules by thermally activated tunneling. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3640–3644. doi: 10.1073/pnas.71.9.3640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. McCammon J. A., Wolynes P. G., Karplus M. Picosecond dynamics of tyrosine side chains in proteins. Biochemistry. 1979 Mar 20;18(6):927–942. doi: 10.1021/bi00573a001. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES