Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Dec;77(12):7227–7231. doi: 10.1073/pnas.77.12.7227

Interaction between the intermediary electron acceptor (pheophytin) and a possible plastoquinone-iron complex in photosystem II reaction centers

V V Klimov 1,*, Ed Dolan 1, E R Shaw 1, Bacon Ke 1,
PMCID: PMC350475  PMID: 16592935

Abstract

Photoreduction of the intermediary electron acceptor, pheophytin (Pheo), in photosystem II reaction centers of spinach chloroplasts or subchloroplast particles (TSF-II and TSF-IIa) at 220 K and redox potential Eh = -450 mV produces an EPR doublet centered at g = 2.00 with a splitting of 52 G at 7 K in addition to a narrow signal attributed to Pheo[unk] (g = 2.0033, ΔH ≈ 13 G). The doublet is eliminated after extraction of lyophilized TSF-II with hexane containing 0.13-0.16% methanol but is restored by reconstitution with plastoquinone A (alone or with β-carotene) although not with vitamin K1. TSF-II and TSF-IIa are found to contain ≈2 nonheme Fe atoms per reaction center. Incubation with 0.55 M LiClO4 plus 2.5 mM o-phenanthroline (but not with 0.55 M LiClO4 alone) decreases this value to ≈0.6 and completely eliminates the EPR doublet, but photoreduction of Pheo is not significantly affected. Partial restoration of the doublet (about 25%) was achieved by subsequent incubation with 0.2 mM Fe2+, but not with either Mn2+ or Mg2+. The Fe removal results in the development of a photoinduced EPR signal (g = 2.0044 ± 0.0003, ΔH = 9.2 ± 0.5 G) at Eh = 50 mV, which is not observed after extraction with 0.16% methanol in hexane. It is ascribed to plastosemiquinone no longer coupled to Fe in photosystem II reaction centers. The results show that a complex of plastoquinone and Fe can act as the stable “primary” electron acceptor in photosystem II reaction centers and that the interaction of its singly reduced form with the reduced intermediary acceptor, Pheo[unk], is responsible for the EPR doublet.

Keywords: photosynthesis, electron paramagnetic resonance

Full text

PDF
7227

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blankenship R. E., Parson W. W. The involvement of iron and ubiquinone in electron transfer reactions mediated by reaction centers from photosynthetic bacteria. Biochim Biophys Acta. 1979 Mar 15;545(3):429–444. doi: 10.1016/0005-2728(79)90152-x. [DOI] [PubMed] [Google Scholar]
  2. Cox R. P., Bendall D. S. The functions of plastoquinone and beta-carotene in photo system II of chloroplasts. Biochim Biophys Acta. 1974 Apr 23;347(1):49–59. doi: 10.1016/0005-2728(74)90199-6. [DOI] [PubMed] [Google Scholar]
  3. Davis M. S., Forman A., Fajer J. Ligated chlorophyll cation radicals: Their function in photosystem II of plant photosynthesis. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4170–4174. doi: 10.1073/pnas.76.9.4170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dutton P. L., Leigh J. S. Electron spin resonance characterization of Chromatium D hemes, non-heme irons and the components involved in primary photochemistry. Biochim Biophys Acta. 1973 Aug 31;314(2):178–190. doi: 10.1016/0005-2728(73)90133-3. [DOI] [PubMed] [Google Scholar]
  5. Feher G. Some chemical and physical properties of a bacterial reaction center particle and its primary photochemical reactants. Photochem Photobiol. 1971 Sep;14(3):373–387. doi: 10.1111/j.1751-1097.1971.tb06180.x. [DOI] [PubMed] [Google Scholar]
  6. Gläser M., Wolff C., Renger G. Indirect evidence for a very fast recovery kinetics of chlorophyll-aII in spinach chloroplasts. Z Naturforsch C. 1976 Nov-Dec;31(11-12):712–721. doi: 10.1515/znc-1976-11-1216. [DOI] [PubMed] [Google Scholar]
  7. Ke B., Dolan E. Flash-induced charge separation and dark recombination in a photosystem-II subchloroplast particle. Biochim Biophys Acta. 1980 May 9;590(3):401–406. doi: 10.1016/0005-2728(80)90210-8. [DOI] [PubMed] [Google Scholar]
  8. Ke B., Sahu S., Elwood S., Beinert H. Further characterization of a photosystem-II particle isolated from spinach chloroplasts by triton treatment: the reaction-center components. Biochim Biophys Acta. 1974 Apr 23;347(1):36–48. doi: 10.1016/0005-2728(74)90198-4. [DOI] [PubMed] [Google Scholar]
  9. Ke B., Vernon L. P., Chaney T. H. Photoreduction of cytochrome b 559 in a photosystem-II subchloroplast particle. Biochim Biophys Acta. 1972 Feb 28;256(2):345–357. doi: 10.1016/0005-2728(72)90065-5. [DOI] [PubMed] [Google Scholar]
  10. Klimov V. V., Klevanik A. V., Shuvalov V. A., Kransnovsky A. A. Reduction of pheophytin in the primary light reaction of photosystem II. FEBS Lett. 1977 Oct 15;82(2):183–186. doi: 10.1016/0014-5793(77)80580-2. [DOI] [PubMed] [Google Scholar]
  11. Knaff D. B., Malkin R., Myron J. C., Stoller M. The role of plastoquinone and beta-carotene in the primary reaction of plant photosystem II. Biochim Biophys Acta. 1977 Mar 11;459(3):402–411. doi: 10.1016/0005-2728(77)90041-x. [DOI] [PubMed] [Google Scholar]
  12. Kohl D. H., Wright J. R., Weissman M. Electron spin resonance studies of free radicals derived from plastoquinone, alpha- and gamma-tocopherol and their relation to free radicals observed in photosynthetic materials. Biochim Biophys Acta. 1969 Aug 5;180(3):536–544. doi: 10.1016/0005-2728(69)90032-2. [DOI] [PubMed] [Google Scholar]
  13. Loach P. A., Hall R. L. The question of the primary electron acceptor in bacterial photosynthesis. Proc Natl Acad Sci U S A. 1972 Apr;69(4):786–790. doi: 10.1073/pnas.69.4.786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Okamura M. Y., Isaacson R. A., Feher G. Spectroscopic and kinetic properties of the transient intermediate acceptor in reaction centers of Rhodopseudomonas sphaeroides. Biochim Biophys Acta. 1979 Jun 5;546(3):394–417. doi: 10.1016/0005-2728(79)90076-8. [DOI] [PubMed] [Google Scholar]
  15. Okayama S., Butler W. L. Extraction and Reconstitution of Photosystem II. Plant Physiol. 1972 May;49(5):769–774. doi: 10.1104/pp.49.5.769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Prince R. C., Tiede D. M., Thornber J. P., Dutton P. L. Spectroscopic properties of the intermediary electron carrier in the reaction center of Rhodopseudomonas viridis. Evidence for its interaction with the primary acceptor. Biochim Biophys Acta. 1977 Nov 17;462(2):467–490. doi: 10.1016/0005-2728(77)90143-8. [DOI] [PubMed] [Google Scholar]
  17. Pulles M. P., Kerkhof P. L., Amesz J. Photoreduction of plastoquinone to plastosemiquinone in spinach chloroplasts at -40 degrees C. FEBS Lett. 1974 Oct 1;47(1):143–145. doi: 10.1016/0014-5793(74)80445-x. [DOI] [PubMed] [Google Scholar]
  18. Schepler K. L., Dunham W. R., Sands R. H., Fee J. A., Abeles R. H. A physical explanation of the EPR spectrum observed during catalysis by enzymes utilizing coenzyme B12. Biochim Biophys Acta. 1975 Aug 26;397(2):510–518. doi: 10.1016/0005-2744(75)90141-2. [DOI] [PubMed] [Google Scholar]
  19. Sonneveld A., Rademaker H., Duysens L. N. Chlorophyll a fluorescence as a monitor of nanosecond reduction of the photooxidized primary donor P-680 Of photosystem II. Biochim Biophys Acta. 1979 Dec 6;548(3):536–551. doi: 10.1016/0005-2728(79)90063-x. [DOI] [PubMed] [Google Scholar]
  20. Tiede D. M., Prince R. C., Reed G. H., Dutton P. L. EPR properties of the electron carrier intermediate between the reaction center bacteriochlorophylls and the primary acceptor in Chromatium vinosum. FEBS Lett. 1976 Jun 15;65(3):301–304. doi: 10.1016/0014-5793(76)80134-2. [DOI] [PubMed] [Google Scholar]
  21. van Best J. A., Mathis P. Kinetics of reduction of the oxidized primary electron donor of photosystem II in spinach chloroplasts and in Chlorella cells in the microsecond and nanosecond time ranges following flash excitation. Biochim Biophys Acta. 1978 Jul 6;503(1):178–188. doi: 10.1016/0005-2728(78)90170-6. [DOI] [PubMed] [Google Scholar]
  22. van Gorkom H. J. Identification of the reduced primary electron acceptor of photosystem II as a bound semiquinone anion. Biochim Biophys Acta. 1974 Jun 28;347(3):439–442. doi: 10.1016/0005-2728(74)90081-4. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES