Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Dec;77(12):7342–7346. doi: 10.1073/pnas.77.12.7342

Evidence for an alternative nitrogen fixation system in Azotobacter vinelandii.

P E Bishop, D M Jarlenski, D R Hetherington
PMCID: PMC350499  PMID: 6938981

Abstract

Two Azotobacter vinelandii strains capable of growing on N2(Nif+) were isolated from two different mutant strains that lacked dinitrogenase activity (Nif-). Extracts of N2-grown cells of the two Nif+ strains lacked significant amounts of the "conventional" dinitrogenase protein subunits, as determined by two-dimensional gel electrophoresis. Instead, the extracts contained at least four new proteins that appeared to be ammonia-repressible (i.e., they were not detected in extracts of ammonia-grown cells). Based on the results of genetic backcrosses, the two Nif+ strains were shown to be pseudorevertants. Both Nif+ pseudorevertant strains were able to grow in N-free media lacking molybdenum but containing tungsten (conditions that prevented growth of the wild-type strain). The four new proteins were observed in extracts of N2-fixing cells of the Nif+ pseudorevertants regardless of whether the cells were grown in the presence of molybdenum-starved wild-type A. vinelandii cells grown under N2-fixing conditions. Under conditions of molybdenum deprivation, Nif- mutant strains of several different phenotypic classes underwent phenotypic reversal to Nif+, as shown by their ability to incorporate 15N2 and to grow in N-free media. These results provide evidence that A. vinelandii possesses an alternative N2-fixation system that is expressed during conditions of molybdenum deficiency.

Full text

PDF
7342

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benemann J. R., McKenna C. E., Lie R. F., Traylor T. G., Kamen M. D. The vanadium effect in nitrogen fixation by azotobacter. Biochim Biophys Acta. 1972 Mar 30;264(1):25–38. doi: 10.1016/0304-4165(72)90113-4. [DOI] [PubMed] [Google Scholar]
  2. Bishop P. E., Brill W. J. Genetic analysis of Azotobacter vinelandii mutant strains unable to fix nitrogen. J Bacteriol. 1977 May;130(2):954–956. doi: 10.1128/jb.130.2.954-956.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bishop P. E., Gordon J. K., Shah V. K., Brill W. J. Transformation of nitrogen fixation genes in Azotobacter. Basic Life Sci. 1977;9:67–80. doi: 10.1007/978-1-4684-0880-5_6. [DOI] [PubMed] [Google Scholar]
  4. Bulen W. A. EFFECT OF TUNGSTATE ON THE UPTAKE AND FUNCTION OF MOLYBDATE IN AZOTOBACTER AGILIS. J Bacteriol. 1961 Jul;82(1):130–134. doi: 10.1128/jb.82.1.130-134.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DE WITT C. W., ROWE J. A. N,O-Diacetylneuraminic acid and N-acetylneuraminic acid in Escherichia coli. Nature. 1959 Aug 1;184(Suppl 6):381–382. doi: 10.1038/184381b0. [DOI] [PubMed] [Google Scholar]
  6. Davis L. C., Shah V. K., Brill W. J., Orme-Johnson W. H. Nitrogenase. II. Changes in the EPR signal of component I (iron-molybdenum protein) of Azotobacter vinelandii nitrogenase during repression and derepression. Biochim Biophys Acta. 1972 Feb 28;256(2):512–523. doi: 10.1016/0005-2728(72)90079-5. [DOI] [PubMed] [Google Scholar]
  7. Hageman R. V., Burris R. H. Changes in the EPR signal of dinitrogenase from Azotobacter vinelandii during the lag period before hydrogen evolution begins. J Biol Chem. 1979 Nov 25;254(22):11189–11192. [PubMed] [Google Scholar]
  8. KEELER R. F., VARNER J. E. Tungstate as an antagonist of molybdate in Azotobacter vinelandii. Arch Biochem Biophys. 1957 Aug;70(2):585–590. doi: 10.1016/0003-9861(57)90146-7. [DOI] [PubMed] [Google Scholar]
  9. McClure P. R., Israel D. W., Volk R. J. Evaluation of the Relative Ureide Content of Xylem Sap as an Indicator of N(2) Fixation in Soybeans: GREENHOUSE STUDIES. Plant Physiol. 1980 Oct;66(4):720–725. doi: 10.1104/pp.66.4.720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Nagatani H. H., Brill W. J. Nitrogenase V. The effect of Mo, W and V on the synthesis of nitrogenase components in Azotobacter vinelandii. Biochim Biophys Acta. 1974 Aug 7;362(1):160–166. doi: 10.1016/0304-4165(74)90037-3. [DOI] [PubMed] [Google Scholar]
  11. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  12. Page W. J., von Tigerstrom M. Optimal conditions for transformation of Azotobacter vinelandii. J Bacteriol. 1979 Sep;139(3):1058–1061. doi: 10.1128/jb.139.3.1058-1061.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Roberts G. P., MacNeil T., MacNeil D., Brill W. J. Regulation and characterization of protein products coded by the nif (nitrogen fixation) genes of Klebsiella pneumoniae. J Bacteriol. 1978 Oct;136(1):267–279. doi: 10.1128/jb.136.1.267-279.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ruvkun G. B., Ausubel F. M. Interspecies homology of nitrogenase genes. Proc Natl Acad Sci U S A. 1980 Jan;77(1):191–195. doi: 10.1073/pnas.77.1.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Shah V. K., Davis I. C., Gordon J. K., Orme-Johnson W. H., Brill W. J. Nitrogenase. 3. Nitrogenaseless mutants of Azotobacter vinelandii: activities, cross-reactions and EPR spectra. Biochim Biophys Acta. 1973 Jan 18;292(1):246–255. doi: 10.1016/0005-2728(73)90269-7. [DOI] [PubMed] [Google Scholar]
  16. Shah V. K., Davis L. C., Stieghorst M., Brill W. J. Mutant of Azotobacter vinelandii that hyperproduces nitrogenase component II. J Bacteriol. 1974 Feb;117(2):917–919. doi: 10.1128/jb.117.2.917-919.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Strandberg G. W., Wilson P. W. Formation of the nitrogen-fixing enzyme system in Azotobacter vinelandii. Can J Microbiol. 1968 Jan;14(1):25–31. doi: 10.1139/m68-005. [DOI] [PubMed] [Google Scholar]
  18. Swisher R. H., Landt M. L., Reithel F. J. The molecular weight of, and evidence for two types of subunits in, the molybdenum-iron protein of Azotobacter vinelandii nitrogenase. Biochem J. 1977 Jun 1;163(3):427–432. doi: 10.1042/bj1630427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Swisher R. H., Landt M., Reithel F. J. Molecular weights of nitrogenase components from Azotobacter vinelandii. Biochem Biophys Res Commun. 1975 Oct 27;66(4):1476–1482. doi: 10.1016/0006-291x(75)90525-2. [DOI] [PubMed] [Google Scholar]
  20. TAKAHASHI H., NASON A. Tungstate as competitive inhibitor of molybdate in nitrate assimilation and in N2 fixation by Azotobacter. Biochim Biophys Acta. 1957 Feb;23(2):433–435. doi: 10.1016/0006-3002(57)90351-7. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES