Skip to main content
BMC Genomics logoLink to BMC Genomics
. 2012 May 23;13:201. doi: 10.1186/1471-2164-13-201

Development of simple sequence repeat (SSR) markers from a genome survey of Chinese bayberry (Myrica rubra)

Yun Jiao 1, Hui-min Jia 1, Xiong-wei Li 1, Ming-liang Chai 1, Hui-juan Jia 1, Zhe Chen 2, Guo-yun Wang 3, Chun-yan Chai 4, Eric van de Weg 5, Zhong-shan Gao 1,
PMCID: PMC3505174  PMID: 22621340

Abstract

Background

Chinese bayberry (Myrica rubra Sieb. and Zucc.) is a subtropical evergreen tree originating in China. It has been cultivated in southern China for several thousand years, and annual production has reached 1.1 million tons. The taste and high level of health promoting characters identified in the fruit in recent years has stimulated its extension in China and introduction to Australia. A limited number of co-dominant markers have been developed and applied in genetic diversity and identity studies. Here we report, for the first time, a survey of whole genome shotgun data to develop a large number of simple sequence repeat (SSR) markers to analyse the genetic diversity of the common cultivated Chinese bayberry and the relationship with three other Myrica species.

Results

The whole genome shotgun survey of Chinese bayberry produced 9.01Gb of sequence data, about 26x coverage of the estimated genome size of 323 Mb. The genome sequences were highly heterozygous, but with little duplication. From the initial assembled scaffold covering 255 Mb sequence data, 28,602 SSRs (≥5 repeats) were identified. Dinucleotide was the most common repeat motif with a frequency of 84.73%, followed by 13.78% trinucleotide, 1.34% tetranucleotide, 0.12% pentanucleotide and 0.04% hexanucleotide. From 600 primer pairs, 186 polymorphic SSRs were developed. Of these, 158 were used to screen 29 Chinese bayberry accessions and three other Myrica species: 91.14%, 89.87% and 46.84% SSRs could be used in Myrica adenophora, Myrica nana and Myrica cerifera, respectively. The UPGMA dendrogram tree showed that cultivated Myrica rubra is closely related to Myrica adenophora and Myrica nana, originating in southwest China, and very distantly related to Myrica cerifera, originating in America. These markers can be used in the construction of a linkage map and for genetic diversity studies in Myrica species.

Conclusion

Myrica rubra has a small genome of about 323 Mb with a high level of heterozygosity. A large number of SSRs were identified, and 158 polymorphic SSR markers developed, 91% of which can be transferred to other Myrica species.

Background

Chinese bayberry is an important commercial horticultural crop. It has been cultivated for more than 7,000 years in southern China, but is little known elsewhere. The production area is currently 340,000 ha, with an annual production of 1.1 million tons. The plant is diploid (2n = 16), generally dioecious, with the female plants cultivated for fruit [1], growing well on poor soils due to the association of nitrogen-fixing bacteria with the root system. It is rich in anthocyanins exhibiting a wide range of pharmacological properties, such as anti-inflammatory, antitumor and antioxidative effects [2].

There are four species within the genus Myrica in China, namely Myrica rubra Sieb. & Zucc., M. esculenta Buch.-Ham., M. nana Cheval., and M. adenophora Hance. M. rubra is widely distributed, with many local cultivars in the Zhejiang, Jiangsu, Fujian and Guangdong provinces and a few from Guizhou, Yunnan and Hunan provinces. The best known cultivars are Biqi and Dongkui, both from the Zhejiang province. Although there are abundant germplasm resources, studies on genetics and breeding of the species are still in their infancy. Molecular marker technology is a popular tool for breeding and genetic research, and with the construction of a genomic library, 13 polymorphic microsatellite loci have been developed in M. rubra[3] and 11 from an expressed sequence tag library [4]. Recently, 12 primer pairs have been temporarily developed by ISSR-suppression PCR [5] with GSG (GT)6 as the primer for enriching microsatellite sequences. Reports on the genetic diversity in Chinese bayberry using SSR markers have also recently been published [6,7], but the number of markers for Chinese bayberry is limited.

The reproducibility, multiallelicism, co-dominance, relative abundance and good genome coverage of SSR markers have made them one of the most useful tools for genetic diversity and linkage mapping. Genomic SSRs and EST-SSRs, considered complementary to plant genome mapping, have been reported in many fruit crops, such as walnut [8], cherry [9], apricot [10] and coconut [11]. EST-SSRs are useful for genetic analysis, but their relatively low polymorphism and the high possibility of no gene-rich regions in the genome are limitations to their use. In contrast, genomic SSRs are highly polymorphic and tend to be widely distributed throughout the genome, resulting in better map coverage [12].

With genetic maps serving as the basis for future positional gene cloning, making map-based cloning and marker-assisted selection possible, the development of more SSRs is essential. As sequencing technologies advance, whole-genome shotgun (WGS) sequences are becoming increasingly available. These DNA sequences are valuable resources for SSR development in many plant species, such as rice [13] and papaya [14]. In addition, they can be used to evaluate the frequency and distribution of different types of SSRs in the genome, and even help to estimate genome size and characters such as heterozygosis and repeats.

As a way of reducing the cost of genotyping research, Schuelke [15] proposed a method for fluorescent dye labelling of PCR fragments with a sequence-specific forward primer: the universal fluorescent-labelled M13(-21) primer, at the 5 end, acts as the forward primer in a ‘one-tube’ reaction. As this method allows for high-throughput genetic analyses, with a high number of microsatellite markers widely used, we considered the possibility of using this approach for multiplex PCR, to improve the efficiency and save costs.

In this study, we mined and validated 158 SSR markers and describe their application for understanding the genetic relationship among 29 Chinese bayberry accessions and other Myrica species. These markers are useful for genotyping and genetic diversity analysis and linkage mapping of Myrica rubra and other Myrica species.

Results

Genome survey using whole genome shotgun data in Chinese bayberry

WGS generated 273,161 (>100 bp) high quality sequence reads from two DNA libraries (250 bp and 500 bp) of the androphyte individual ‘C2010-55’. We used 9.01 G raw data for K-mer analysis and heterozygous simulation. For the 17-mer frequency distribution (Figure 1), the peak of the depth distribution was about 22. The estimated genome size was 323 Mb, using the formula: genome size = k-mer count/peak of the kmer distribution. The minor peak at 1/2 altitude of the main peak indicates the high level of heterozygosity in this genome (Figure 1). A total of 739,969 contigs were assembled with a total sequence length of 255.7 Mb. The length of N50 was 295 bp in our assembly, and the longest contig and scaffold 7,593 and 127,008 bp, respectively.

Figure 1.

Figure 1

The distribution of 17-mer depth analysis based on whole genome shotgun data in Chinese bayberry.

Frequency distribution of different types of SSR markers

A total of 17,172 out of 273,161 scaffolds (6%) retrieved from the genome survey sequence contained 28,602 SSRs (Table 1), of which 5,401 contained more than one SSR, and 1,444 SSRs were present in compound format. Among the derived SSR repeats, the di-nucleotide was the most abundant repeat, accounting for 84.72% of total SSRs, followed by tri- (13.78%), tetra- (1.34%), penta- (0.12%), and hexa- (0.04%) nucleotides (Table 1). There was a large proportion of both dinucleotides and trinucleotides while the rest amounted to less 2%. The average frequency of occurrence was about 10.47% (Table 1).

Table 1.

Occurrence of SSRs in the Genome Survey of Chinese bayberry

Type Number Proportion in all SSRs (%) Frequency (%)
Dinucleotide
24,233
84.72%
8.87%
Trinucleotide
3,941
13.78%
1.44%
Tetranucleotide
383
1.34%
0.14%
Pentanucleotide
35
0.12%
0.013%
Hexanucleotide
10
0.04%
0.004%
Total 28,602 100% 10.47%

The SSR frequency of each motif is presented in Additional file 1. The SSR motif consists of 69 types. Among the repeat motifs of the dinucleotide, the AG/CT repeat was the most common, representing 53.72%, followed by 39.20% AT repeats (Figure 2), and the predominant motifs of trinucleotide (AAG/CTT and AAT/ATT) repeats accounted for 37.15% and 32.56%, respectively (Figure 3).

Figure 2.

Figure 2

Percentage of different motifs in dinucleotide repeats in Chinese bayberry genome.

Figure 3.

Figure 3

Percentage of different motifs in trinucleotide repeats in Chinese bayberry genome.

Polymorphism of SSR markers

We first designed and synthesised 600 SSR primer pairs from those scaffolds more than 2Kb long. The majority of SSR loci were dinucleotide repeats (597, 99.5%), and the remainder trinucleotide. Initially, the effectiveness of these primer pairs was detected in two cultivars (Biqi and Dongkui) and M. cerifera through denaturing PAGE (Polyacrylamide gel electrophoresis), and 581 (96.8%) of these were amplified successfully in Biqi and Dongkui, and 400 (66.7%) in M. cerifera. The SSR loci (186, 31%) were identified as heterozygous loci either in Biqi or in Dongkui. Subsequently, they were used to screen 32 accessions, and detected an average of 8.25 alleles and from 3 to 15 alleles per locus (Table 2).

Table 2.

Characteristics of 158 SSR markers in this study

Locus
GenBank
Repeat motif
Primer sequence (5'-3')
Size range(bp)a
Na
Ho
He
PIC
PHW
  Accession                
ZJU001ab
JQ318696
(GA)10
F:<NED > <Tail-1 > CCTCTCCACCCATGAGAAAC
160-188
7
0.1667
0.4271
0.4002
0.0000
R:CAAATCATTCCCTGCTTTCC
ZJU002ac
JQ318697
(TC)13
F:<NED > <Tail-1 > TCAAAGAGACGTTGTGGCAG
219-229
4
0.2083
0.5257
0.4572
0.0005
R:TCCGCTCACAGACAGAGAGA
ZJU003ab
JQ318698
(AG)11
F:<NED > <Tail-1 > GTCACCTTGCTCTTCTTGGC
203-217
8
0.7407
0.8344
0.7949
0.0003
R:TCCTTGTACTTGTTCTGCTGGA
ZJU004ac
JQ318699
(GA)10
F:<NED > <Tail-1 > AACAGAACCATCGTCAAGGC
204-210
4
0.3571
0.7325
0.6704
0.0003
R:GGTACAGTCGCTCCGGTTTA
ZJU005ab
JQ318700
(AG)14
F:<NED > <Tail-1 > CTTTGGACATGGCAACACAC
200-228
11
0.3000
0.8679
0.8291
0.0000
R:TCCACTTTGACAGATTCCCA
ZJU006ab
JQ318701
(GA)10
F:<NED > <Tail-1 > CTCGCCCTCTCTCTCTACCA
193-205
5
0.2593
0.3305
0.3089
0.0000
R:AGTTTATCCACCCGTGTCGT
ZJU007ab
JQ318702
(AG)13
F:<NED > <Tail-1 > TGATCCATTGGAACCATGTG
193-209
8
0.5625
0.6617
0.6302
0.1868
R:TCAGTTGATGGTGCAGAAGC
ZJU008ab
JQ318703
(CT)10
F:<NED > <Tail-1 > GGAGAAATGAACGGTGGAGA
191-215
10
0.7931
0.7973
0.7563
0.0002
R:TCCAAAGCTAATACCCACGC
ZJU009ab
JQ318704
(CT)10
F:<NED > <Tail-1 > AATTGTCGCAAGTAGTCGCC
207-221
5
0.0741
0.3599
0.3371
0.0000
R:ATATCAACCCATGGGAGCAA
ZJU010ab
JQ318705
(CT)11
F:<NED > <Tail-1 > TGCAACATCGAAATTGGAAA
181-205
9
0.9032
0.8012
0.7614
0.0000
R:ATGCCGGCAAGTCTTAGTGT
ZJU011a
JQ318706
(GA)10
F:<NED > <Tail-1 > GGAGGCTCGTCAGTCATCTC
200-216
9
0.2692
0.7926
0.7554
0.0000
R:TTAGCGTCCCTTCTCTCTCG
ZJU012ab
JQ318707
(CT)12
F:<NED > <Tail-1 > CTTCACTCACCGCCTTTCTC
184-218
13
0.5000
0.8571
0.8251
0.0000
R:AATGGCCTCCACATCTCAAG
ZJU013ab
JQ318708
(CT)10
F:<NED > <Tail-1 > ACTTGTCATTCCCACGTTCC
211-221
6
0.4444
0.5199
0.4515
0.0094
R:CACTCCATCTCAACCACCCT
ZJU014ab
JQ318709
(AG)15
F:<NED > <Tail-1 > TGGAATGTCGATCTGAAACAA
186-212
13
0.6875
0.9033
0.8791
0.0251
R:ACCAGCTTATACGACGGTGG
ZJU015ab
JQ318710
(GA)11
F:<NED > <Tail-1 > TTGGTGTGGTGGTAATGGTG
199-221
6
0.6154
0.6614
0.5902
0.0585
R:AAATAATGCAAGCAGGTGGG
ZJU016ab
JQ318711
(TC)10
F:<NED > <Tail-1 > CCGTTGACTATTGCCCAGTT
196-216
11
0.6333
0.8469
0.8130
0.0179
R:GGCAATTTCCAAATCGCTAA
ZJU017ab
JQ318712
(CT)13
F:<NED > <Tail-1 > ACTGAAGAACCAAACGTGGG
180-200
6
0.6250
0.7093
0.6518
0.0003
R:GGTGTGTTTCTCTGTGTGCG
ZJU018ab
JQ318713
(CT)15
F:<NED > <Tail-1 > ACGAAATTTGACCAATCGCT
196-216
7
0.1429
0.7189
0.6667
0.0000
R:AGGGTTTCTTCTGGTTCGGT
ZJU019ab
JQ318714
(GA)12
F:<NED > <Tail-1 > TTTCATAACCCGTTGGCTTC
209-219
6
0.2800
0.6865
0.6317
0.0000
R:AAGGTGGAAACGTGTCAAGG
ZJU020b
JQ318715
(AG)10
F:<NED > <Tail-1 > CACAGGACATGTGATGGAGG
201-213
7
0.5172
0.7453
0.6983
0.0000
R:CCATCCTGAGCTTTGTCGAT
ZJU021a
JQ318716
(TG)10
F:<NED > <Tail-1 > TCGCCAGCTTCCTAATGTCT
190-212
8
0.7778
0.7428
0.7025
0.0663
R:GAGCGCATGTTGTTGCTAAA
ZJU022ab
JQ318717
(GA)10
F:<NED > <Tail-1 > AAGCTTAAGCAAGCGTCGAG
188-208
9
0.6923
0.8575
0.8227
0.0109
R:TGCGAAGGGAAATTTCAGAC
ZJU023ac
JQ318718
(AG)15
F:<NED > <Tail-1 > GTGTTTGGGCAGCACCTATT
200-226
14
0.6667
0.8840
0.8544
0.0251
R:AAAGAGTACAACAACGCGGG
ZJU024ab
JQ318719
(TC)10
F:<NED > <Tail-1 > CCGCATGTTTGATTGATGTC
180-196
6
0.6000
0.7345
0.6716
0.1624
R:GCGTTGAGCGGAGAGATTAC
ZJU025ab
JQ318720
(TC)10
F:<NED > <Tail-1 > TTTGAGCGATAGTACGGAGG
216-234
8
0.2667
0.7537
0.7044
0.0000
R:ATATGCTACGTTGGTTGCCC
ZJU026ab
JQ318721
(TC)10
F:<NED > <Tail-1 > CCAGACAGGTTAGCCACCAT
200-220
10
0.4545
0.8573
0.8199
0.0000
R:GCCTCTGGATCTCGATTACG
ZJU027
JQ318722
(TTC)8
F:<NED > <Tail-1 > GTTGCAATTTGCCTCCATTT
203-227
6
0.3125
0.6250
0.5321
0.0003
R:GGTGCCTATACTGCCAGCTC
ZJU028ab
JQ318723
(AG)10
F:<NED > <Tail-1 > CAACCATCCAAACCAAATCC
164-170
4
0.1724
0.2789
0.2566
0.0000
R:TCTACCAATCGTGGCTAGGG
ZJU029ab
JQ318724
(AG)10
F:<NED > <Tail-1 > TCTTCCGGGATGTCTACAGG
189-205
6
0.5312
0.6925
0.6296
0.0480
R:CAACAGCAATCGCAAAGAAA
ZJU030ab
JQ318725
(CA)13
F:<NED > <Tail-1 > AAGTGAGCTCTCCCTCCCTC
193-205
7
0.4286
0.7208
0.6676
0.0000
R:CACCGAAATACTTGCCGTTT
ZJU031ab
JQ318726
(GA)16
F:<NED > <Tail-1 > GCACAGGAACACCAGGATCT
179-195
8
0.8387
0.7948
0.7492
0.0000
R:CCAAGCCCTAATTCCCTTTC
ZJU032ab
JQ318727
(TC)11
F:<NED > <Tail-1 > ATTCCCACGTTCGTTCAGAC
204-226
8
0.6786
0.6442
0.5852
0.0220
R:GATGCCTAACTCCGAATCCA
ZJU033ab
JQ318728
(TC)10
F:<NED > <Tail-1 > GCACAAGTTGCTGACATGCT
195-207
6
0.0690
0.6655
0.5897
0.0000
R:AGTTGCATTCAACCCACACA
ZJU034ab
JQ318729
(CT)10
F:<NED > <Tail-1 > ATGGGAATGTGGAGAACGAG
191-209
8
0.4138
0.7762
0.7250
0.0000
R:GCTTTGCTTCTTTGCTTTGG
ZJU035ab
JQ318730
(GA)14
F:<NED > <Tail-1 > TTGGATCCTGGTTACCTTCG
201-217
8
0.1290
0.7425
0.6900
0.0000
R:AAACTGCATGCATGGTTCCT
ZJU036ab
JQ318731
(GA)10
F:<NED > <Tail-1 > CTGCCACTCTTACTGGCCTC
186-214
8
0.3333
0.5895
0.5516
0.0000
R:ATGTGCCCAATCTTGACTCC
ZJU037ab
JQ318732
(TC)10
F:<NED > <Tail-1 > GTGATTTCCCTCCCATTGAC
208-228
9
0.8125
0.7867
0.7429
0.0135
R:ACGAAGCGGGAAGTAGGATT
ZJU038b
JQ318733
(AG)10
F:<NED > <Tail-1 > CTTATGGCCCGTTTGTAACC
194-200
4
0.2273
0.5106
0.4646
0.0007
R:AACGATTGCTTTAAGCGGAA
ZJU039a
JQ318734
(CT)10
F:<NED > <Tail-1 > AAACGAAAGTGGGCGTATTG
219-229
6
0.3077
0.6161
0.5745
0.0004
R:CACCAGTGCGTCCTATGAGA
ZJU040
JQ318735
(TC)16
F:<NED > <Tail-1 > AAACTCCGTGCTGGAATCAA
198-220
10
0.3182
0.8192
0.7798
0.0000
R:GCAGACAAGCCTTCCTGTTC
ZJU041ab
JQ318736
(TC)11
F:<PET > <Tail-2 > TGATCACCTTTCAGTTGGCA
226-244
5
0.2258
0.3199
0.3031
0.0000
R:CACATTGGCAGAGTCCTGAA
ZJU042ab
JQ318737
(TC)10
F:<PET > <Tail-2 > AGGATTTCTCCAGAGGGACG
220-242
5
0.3571
0.5331
0.4880
0.0000
R:GGTTCCGCATCAAACTACAAA
ZJU043b
JQ318738
(CT)10
F:<PET > <Tail-2 > AAACCGAGCTCTCCTAAGCC
225-245
4
0.5714
0.6383
0.5667
0.2655
R:CTCGCAATTTCTCGGGATAC
ZJU044ab
JQ318739
(GA)12
F:<PET > <Tail-2 > GATGGTGGCTTGTCTTGGTT
235-255
8
0.2500
0.5091
0.4853
0.0000
R:AAGTGGGACGTCAATTCCTG
ZJU045ab
JQ318740
(CT)10
F:<PET > <Tail-2 > GAGAGAGGGAGAGAGGCCAT
228-258
13
0.6129
0.8821
0.8544
0.0007
R:GGAAGATTCATGGGAGAGGG
ZJU046ab
JQ318741
(AG)10
F:<PET > <Tail-2 > TTGCTGTAAGCATCGCAATC
226-242
7
0.3871
0.6256
0.5824
0.0000
R:AAGCTCCGGTAACACACACC
ZJU047ab
JQ318742
(GA)13
F:<PET > <Tail-2 > TTCGATCATTCATGAGGCTG
247-259
7
0.7097
0.7615
0.7074
0.0019
R:TTAATTGCATCCCGGATTTC
ZJU048ab
JQ318743
(CT)14
F:<PET > <Tail-2 > AGCGGACCGAGTTGTAGAGA
230-254
12
0.2903
0.8493
0.8166
0.0000
R:CCAACCCTACAAAGCGAGAG
ZJU049ab
JQ318744
(GAA)8
F:<PET > <Tail-2 > GTGTCTGCAGCAACTTCCAC
234-267
10
0.8125
0.7262
0.6797
0.0000
R:GTCGGAACCGAAGATGGTTA
ZJU050ab
JQ318745
(AG)11
F:<PET > <Tail-2 > GTCACAGCCTGGATAGCTCC
233-245
7
0.3000
0.7288
0.6916
0.0000
R:GTCTCTCCTGGATGAGCTGC
ZJU051ab
JQ318746
(AG)12
F:<PET > <Tail-2 > AGAGAAAGACCGGGACCAAT
229-233
3
0.4333
0.4198
0.3594
0.0012
R:GAGAAATAAAGCCGAGCGTG
ZJU052ab
JQ318747
(AG)16
F:<PET > <Tail-2 > CCCGAGCTGAACGAAATAGA
230-248
9
0.4348
0.8628
0.8261
0.0000
R:GGATCAAAGCGTTGTCGTTT
ZJU053ab
JQ318748
(AG)10
F:<PET > <Tail-2 > AAATCCGAAACACCTCTCCC
222-240
8
0.5000
0.5655
0.5211
0.0001
R:ATGTGGAGACTTCCACTGGG
ZJU054ab
JQ318749
(CT)13
F:<PET > <Tail-2 > TTGATTTGCTTTGTGCATTTG
232-250
9
0.3000
0.8667
0.8268
0.0003
R:CAAACTACCGTGCCCAACAT
ZJU055ab
JQ318750
(CT)10
F:<PET > <Tail-2 > TTATGGGTTTCATTGGGCAG
238-254
6
0.2500
0.7006
0.6357
0.0000
R:TCACCAGGCTACTGCATGTC
ZJU056ab
JQ318751
(GA)13
F:<PET > <Tail-2 > GACAAAGTGGGTGCCATTCT
230-246
7
0.5714
0.7643
0.7122
0.0068
R:TGCATGCTTCCTTTCTTCCT
ZJU057ab
JQ318752
(CT)10
F:<PET > <Tail-2 > TCATGTGGAGATTGAAGCCA
230-244
6
0.1579
0.6814
0.6283
0.0000
R:CGTCCCGAATGAAGATTTGT
ZJU058ab
JQ318753
(GT)10
F:<PET > <Tail-2 > TCCGGAGCTTTCAATCTCAT
252-274
11
0.7500
0.8274
0.7900
0.8036
R:GCCTACGAACTCAGGTTCCA
ZJU059b
JQ318754
(TC)14
F:<PET > <Tail-2 > TGTTTGTTTCTTGCTATTTCCATC
217-235
7
0.5200
0.7935
0.7505
0.0016
R:GACAGTTCCCACCAGCATTT
ZJU060ab
JQ318755
(GT)8(GA)9
F:<PET > <Tail-2 > TGGCCAGGAACTTTGTATCC
223-243
7
0.6562
0.8110
0.7691
0.0000
R:GAAAGATTGGGAATGCTGGA
ZJU061ab
JQ318756
(TC)11
F:<PET > <Tail-2 > TTTGGAGGAAGCAAACAAGC
204-232
11
0.2812
0.7922
0.7506
0.0000
R:TCCTGCGCCAACAATCTAAT
ZJU062
JQ318757
(TC)10
F:<PET > <Tail-2 > GTCGAGAGAACAAAGCGACC
240-252
7
0.2400
0.3282
0.3135
0.0004
R:GTCCAATGCCGCACTAACTT
ZJU063ab
JQ318758
(TC)12
F:<PET > <Tail-2 > ACTCAGCAGGACCACCAACT
232-250
10
0.7000
0.8593
0.8270
0.1320
R:TTAGACGGAAATTGGGCTTG
ZJU064b
JQ318759
(GA)10
F:<PET > <Tail-2 > ACCATGAAGCTGACCTGGAG
226-244
6
0.4348
0.7256
0.6666
0.0001
R:TTTCGTGGTCCCACCTACTC
ZJU065ac
JQ318760
(CA)13
F:<PET > <Tail-2 > TCCAGAATATCATCTCTTGCCA
214-236
9
0.6333
0.7706
0.7219
0.0001
R: ATATTCCTAACGTGTGCGGG
ZJU066ab
JQ318761
(GA)10
F:<PET > <Tail-2 > CTTTCCCTTGTCGCTTTCAG
221-235
8
0.2593
0.6450
0.6075
0.0000
R:GGTCGCAGATCAGGTCAAGT
ZJU067ab
JQ318762
(CT)10
F:<PET > <Tail-2 > CAGACAGCGAGGAGACAACA
217-263
11
0.6923
0.8273
0.7861
0.0070
R:GGTCTTTCGAACTTTGCTCG
ZJU068ab
JQ318763
(CT)10
F:<PET > <Tail-2 > GAAGCTAAACGCCAGAAACG
227-239
6
0.2917
0.7535
0.6913
0.0000
R:ACTCCTCACACGAATGGGTC
ZJU069bc
JQ318764
(GA)10
F:<PET > <Tail-2 > TGCCATAATCCTGAGAGCCT
224-258
8
0.2609
0.5594
0.5235
0.0004
R:TGTTCTGTAATGGCGTGGAA
ZJU070ab
JQ318765
(CT)11
F:<PET > <Tail-2 > GTGCTCGAGATGTCCTCCAT
221-247
7
0.5200
0.7861
0.7364
0.0000
R:ACAATCCCATCGCATACAGG
ZJU071ab
JQ318766
(GA)10
F:<PET > <Tail-2 > CTAAGGTTGGTCCCTGTCCA
228-234
3
0.3704
0.6157
0.5305
0.0110
R:CTTGTGTGGTGATGGTTTGG
ZJU072ab
JQ318767
(AG)10
F:<PET > <Tail-2 > AGTCAGCGTGGGAATGTACC
223-237
7
0.5625
0.7604
0.7117
0.0000
R:TTTCAGAACAAGTTCGTCGC
ZJU073a
JQ318768
(AG)12
F:<PET > <Tail-2 > TACGCCAAGATCCAAAGACC
222-242
7
0.2105
0.7568
0.7087
0.0000
R:TCTCGAGTTGAGTTTGGGCT
ZJU074ab
JQ318769
(CT)15
F:<PET > <Tail-2 > TGCAGAGGAACTGGTGACTG
215-239
10
0.5517
0.8234
0.7831
0.0007
R:GAGAAGGCTCAGTGGGTGAG
ZJU075b
JQ318770
(CT)17
F:<PET > <Tail-2 > AATAAACACACAGGGCGAGG
239-255
9
0.0769
0.8650
0.8307
0.0000
R:ATCGGGCAGACCAGAATATG
ZJU076ab
JQ318771
(AG)9
F:<FAM > <Tail-3 > ATGGTTACCGACGTCCTCTG
131-169
11
0.8438
0.8353
0.8034
0.0000
R:AGTGCAGAGTGCGAGATCAA
ZJU077ab
JQ318772
(AC)9
F:<FAM > <Tail-3 > TTTGGAATTCAACAACATTTAGAC
137-153
8
0.2000
0.6590
0.6079
0.0000
R:TGCAGCCTTGCTCCTCTTAT
ZJU078ab
JQ318773
(TC)10
F:<FAM > <Tail-3 > ACACCACGGTTCTTCGATTC
130-146
6
0.5500
0.7513
0.6881
0.1339
R:GTAACGAGGCTCTTGCTTGC
ZJU079ab
JQ318774
(TC)13
F:<FAM > <Tail-3 > AAGGCTAGACCGCAATCTGA
116-134
9
0.8438
0.8596
0.8291
0.0008
R:GGGCAACAGTTTACTTCCCA
ZJU080ab
JQ318775
(CT)9
F:<FAM > <Tail-3 > CTTGACGAAATGCAGACGAA
124-134
5
0.2903
0.3411
0.3172
0.0103
R:TCCGGATCAGGGTCAAATAG
ZJU081ab
JQ318776
(GA)8
F:<FAM > <Tail-3 > TGCTCTTGCAGAGAGTCGAG
137-157
6
0.5517
0.5820
0.5379
0.0003
R:TCATAATACCCTTGGCAAACA
ZJU082ab
JQ318777
(CT)10
F:<FAM > <Tail-3 > TATATCGAATCCCAAAGGCG
129-141
5
0.3438
0.4043
0.3792
0.0169
R:AAGATATTGGTCCGGCTCCT
ZJU083ab
JQ318778
(AG)10
F:<FAM > <Tail-3 > TAGCCTTGGAGATTTAGGGC
133-157
11
0.8667
0.8960
0.8692
0.0000
R:TTGAAATTTCGCAGCCTCTT
ZJU084ab
JQ318779
(AG)9
F:<FAM > <Tail-3 > TTTCGATTGGTGGTCTGTGA
124-138
6
0.1379
0.5197
0.4766
0.0000
R:TTATTAACTTCACTTTGTTTATTCGG
ZJU085ab
JQ318780
(AG)9
F:<FAM > <Tail-3 > GCTTTAACCGAGTGATGGGA
150-184
8
0.6875
0.5992
0.5383
0.6352
R:TAAAGGAGCGCTGGAAAGAA
ZJU086ab
JQ318781
(TC)10
F:<FAM > <Tail-3 > TCCTCTCTTTCACACTTCCGA
118-152
13
0.9062
0.8720
0.8445
0.0005
R:GGTCGATCATTTCTCTCCCA
ZJU087ab
JQ318782
(GA)9
F:<FAM > <Tail-3 > CGAGTGTAGCTAGGAACGGC
135-149
8
0.4688
0.7748
0.7273
0.0204
R:AATTGGACCTGCAAATCTCG
ZJU088ab
JQ318783
(CT)9
F:<FAM > <Tail-3 > GAGCTCCGAACTTCTTCCCT
126-150
13
0.9677
0.8773
0.8490
0.0053
R:CTTCTCCACAGGACTCTGCC
ZJU089ab
JQ318784
(GA)8
F:<FAM > <Tail-3 > CGTTAGGATTCGGGAACAGA
138-152
7
0.8065
0.7382
0.6778
0.0000
R:CAGGGCTAATGTGGACCAGT
ZJU090ab
JQ318785
(AG)9
F:<FAM > <Tail-3 > GGAAATCTCCGAATGTGATCC
118-134
8
0.2903
0.6642
0.6089
0.0000
R:TGGTGGATGAACCACTCAAA
ZJU091bc
JQ318786
(TC)15
F:<FAM > <Tail-3 > AAAGAGCACACAGCCCTAGC
124-146
10
0.4615
0.8695
0.8358
0.0012
R:GGCAGTGTCGCAGTGATAGA
ZJU092ab
JQ318787
(TG)10
F:<FAM > <Tail-3 > CTCTTGCCGACCTCATTGTT
127-151
11
0.6875
0.8264
0.7916
0.0041
R:CGGGACTCGCATAAATCACT
ZJU093ab
JQ318788
(GA)10
F:<FAM > <Tail-3 > ATGCCATGTTGCATGAGTGT
130-156
12
0.9355
0.8662
0.8367
0.3689
R:TATCCCGTAAGCAATCAGGG
ZJU094ab
JQ318789
(CT)10
F:<FAM > <Tail-3 > ATCACGGGTTCTGCTGTTCT
124-150
10
0.9062
0.8646
0.8332
0.0000
R:CAGAAGAAGCCATTTCTGCC
ZJU095ab
JQ318790
(AG)9
F:<FAM > <Tail-3 > TACCCACCGTACCAAAGGTC
114-130
7
0.4839
0.7070
0.6420
0.0004
R:GAATGAACCCAGGCGATAGA
ZJU096ab
JQ318791
(CT)10
F:<FAM > <Tail-3 > CATACTGCAATGCATCTCCC
126-154
13
0.8000
0.8757
0.8479
0.0310
R:TCAATTTGTGTGCCCTTACG
ZJU097ab
JQ318792
(AG)10
F:<FAM > <Tail-3 > AATTGTTAGGGAGGGCTCGT
118-134
8
0.8438
0.7778
0.7297
0.0009
R:TGCGTTGTGGAGACCATTTA
ZJU098ab
JQ318793
(CT)9
F:<FAM > <Tail-3 > GACGCTCCATCTCTGGTCTC
145-167
10
0.9355
0.8831
0.8549
0.0483
R:CCCAAACCGCACTAGAGAAA
ZJU099ab
JQ318794
(GA)10
F:<FAM > <Tail-3 > TTGTTGCACTTGTGGGTGAT
130-150
9
0.7742
0.7763
0.7299
0.0000
R:AACTACAAACAGCCCAACCG
ZJU100ab
JQ318795
(TC)9
F:<FAM > <Tail-3 > ACTTGTCCGGATTCCACAAC
128-154
5
0.8333
0.6316
0.5629
0.2930
R:TCAAGGCACACAATAATGCAA
ZJU101ab
JQ318796
(AG)9
F:<FAM > <Tail-3 > TGATTGAGCTGCCAACAAAG
134-154
7
0.6667
0.7062
0.6527
0.8110
R:TTTAACATTTGGCACCGACA
ZJU102ab
JQ318797
(GA)10
F:<FAM > <Tail-3 > GAACCACGAACTTCAACCGT
118-132
8
0.4231
0.5890
0.5441
0.0111
R:AACCACCAAACTTAGCTTCCA
ZJU103ab
JQ318798
(AG)9
F:<FAM > <Tail-3 > TGAGGAGGGAGTTGAGTTGG
121-139
10
0.7097
0.7731
0.7359
0.0003
R:GCGTCTTCCTCCTCCTTCTT
ZJU104ab
JQ318799
(TA)9
F:<FAM > <Tail-3 > ACGTGGCAGTTGAGTTGTTG
114-128
6
0.3704
0.6296
0.5702
0.1383
R:TCAGATCTCCGTTGGAGCTT
ZJU105ab
JQ318800
(GA)11
F:<FAM > <Tail-3 > TGAGAAACGCAGCAAGAGAA
135-157
11
0.5806
0.8165
0.7801
0.0000
R:CATCTCTCCCAAGCATCCTC
ZJU106ab
JQ318801
(GA)8
F:<FAM > <Tail-3 > GCAGTCGGATAGAGAGACGG
134-146
7
0.3636
0.7717
0.7203
0.0000
R:TGTTGATCAAACACACCGAGA
ZJU107ab
JQ318802
(TC)10
F:<FAM > <Tail-3 > TGGTGTCACGATTCACTGGT
114-130
8
0.4375
0.5322
0.5012
0.3632
R:CTGCATGTAATGGCAGTTCAA
ZJU108b
JQ318803
(CT)9
F:<FAM > <Tail-3 > TTGGTAGTGCACTGCAGGAG
132-160
13
0.3929
0.8253
0.7909
0.0000
R:CGAGGGTCGAGTTCAGAGAG
ZJU109ab
JQ318804
(TC)10
F:<FAM > <Tail-3 > TCCGCTCTCCTCTCTGTCTC
138-164
11
0.8000
0.8441
0.8082
0.0003
R:GTGAGTTGTGCTGCTGCAAT
ZJU110ab
JQ318805
(AG)9
F:<FAM > <Tail-3 > TTGCACGGTGGTAGCTGTAG
143-159
5
0.7667
0.6486
0.5844
0.0000
R:ACTGTGGTCCGTCGAACTCT
ZJU111ab
JQ318806
(TC)8
F:<FAM > <Tail-3 > TTTCTAATGTTGTTCGCCCA
122-136
5
0.9000
0.5701
0.4652
0.0000
R:TCATTCTCCTTGCAGATCCC
ZJU112ac
JQ318807
(GA)8
F:<FAM > <Tail-3 > GGAGAGTGAGAGATCGCAGC
133-147
8
0.4839
0.6557
0.6212
0.0009
R:GGCAACACCCTCAGTATCGT
ZJU113ab
JQ318808
(AG)9
F:<FAM > <Tail-3 > AAACGCACCAGAGAAAGACG
138-154
6
0.6667
0.6588
0.5987
0.0130
R:TCCATCTCTGGTCTCCATCC
ZJU114a
JQ318809
(GA)10
F:<FAM > <Tail-3 > CTAGAGCGCTCCACGATACC
132-160
12
0.8214
0.8740
0.8448
0.0388
R:AGAACGCTTGGAGAATCGAA
ZJU115ab
JQ318810
(AG)14
F:<FAM > <Tail-3 > GGTCTGAGGCCTTCACTCTG
126-156
14
0.9677
0.9022
0.8775
0.0068
R:GAGACCCAATAACCCATCCA
ZJU116ab
JQ318811
(AG)15
F:<FAM > <Tail-3 > CTTTCTCCGTCTGCTCCATC
110-136
13
0.6875
0.8199
0.7846
0.0001
R:GTCCAAACTTGGAGCCCATA
ZJU117ab
JQ318812
(AAG)9
F:<FAM > <Tail-3 > TCTCAGATCCCTCCACGTTC
118-133
6
0.4688
0.6944
0.6426
0.0000
R:CCACTGGATCAGGACAACCT
ZJU118ab
JQ318813
(CT)9
F:<FAM > <Tail-3 > CAAGCCACGTGCATACCTATT
120-144
11
0.8750
0.8502
0.8171
0.0001
R:CAGCTGGCTTCTAACTGCAA
ZJU119a
JQ318814
(AG)11
F:<FAM > <Tail-3 > CTTTCGACTTCAGAGGCAGC
136-152
9
0.4828
0.8348
0.7975
0.0000
R:TCCCTCTCAAACTTTGCCAC
ZJU120ab
JQ318815
(GA)8
F:<HEX > <Tail-4 > TTGGTTTCGTTTGCAAGTCA
164-180
6
0.9355
0.7012
0.6354
0.0073
R:GTCATCCATCCAATCCATCC
ZJU121a
JQ318816
(CT)11
F:<HEX > <Tail-4 > AATCACCGAAGAAATCCACG
164-186
11
0.8621
0.8705
0.8426
0.0000
R:ATTGCCCTCCCTTCTGTTCT
ZJU122ab
JQ318817
(TC)8
F:<HEX > <Tail-4 > TGACGGAAGGATACTGGCTC
164-180
7
0.7742
0.7509
0.7012
0.0000
R:CCATCAGACATGGCTTTCCT
ZJU123ab
JQ318818
(CT)8
F:<HEX > <Tail-4 > TGAATTATTCGGTTCCCTGG
172-176
3
0.4667
0.6367
0.5499
0.2152
R:TGCTTCAGTTCCAAACGAAA
ZJU124ab
JQ318819
(CT)10
F:<HEX > <Tail-4 > GTGGCAGCCTCTCTATCGTC
161-187
12
0.9355
0.8778
0.8498
0.0001
R:ATGACGTACTGCCCTTGCTT
ZJU125ab
JQ318820
(TC)8
F:<HEX > <Tail-4 > TAAGGGCAGTCAGACCAACC
164-186
4
0.2188
0.3884
0.3453
0.0000
R:CTGCAGCCTACAATGATCCA
ZJU126ab
JQ318821
(GA)10
F:<HEX > <Tail-4 > CCAATGTGGACAGGTGTGAG
173-193
11
0.9677
0.8535
0.8228
0.0000
R:GGCAGTAGTCGCTTCCCATA
ZJU127
JQ318822
(GC)10
F:<HEX > <Tail-4 > AGGATCCTTGTCACCACCAG
165-189
11
0.9259
0.8288
0.7900
0.0079
R:AATTCTTCCTTCCCAGCCTC
ZJU128ab
JQ318823
(AG)14
F:<HEX > <Tail-4 > CCCAATTGACACAAATTCCC
145-161
5
0.4194
0.5019
0.4496
0.1981
R:TTGGCATAGCATTGTTCGTC
ZJU129ab
JQ318824
(CT)10
F:<HEX > <Tail-4 > GAGGTGCAATTACGTGGCTT
161-189
10
0.7500
0.8031
0.7611
0.0234
R:TCAAGCATCAGCTGCTCAGT
ZJU130ab
JQ318825
(GA)8
F:<HEX > <Tail-4 > GATTGCATGCACCAAATCAC
160-176
5
0.3478
0.4599
0.4131
0.2852
R:GAATGTCCACGACGTGAATG
ZJU131ab
JQ318826
(CT)14
F:<HEX > <Tail-4 > TTGAGAATCACAAACGCCTG
153-187
13
0.8710
0.8990
0.8735
0.0009
R:GGTGGGTGAAATGCCTAGAA
ZJU132ab
JQ318827
(CT)11
F:<HEX > <Tail-4 > AGGCACCTTTCTTTCCTCTC
164-178
5
0.6452
0.6568
0.5834
0.6586
R:CAAGGAAGGAGGTGACGAAG
ZJU133ab
JQ318828
(TC)11
F:<HEX > <Tail-4 > GCCCTGCAGTCTTTGTCAAT
171-195
8
0.8710
0.7731
0.7267
0.0000
R:CAGCTTGCAGTGTTCATTCA
ZJU134ab
JQ318829
(GA)11
F:<HEX > <Tail-4 > AGTGCCCAAGCATGACTTCT
172-190
8
0.9688
0.7907
0.7507
0.0004
R:AATCAGTTGTCCGAGGATGG
ZJU135ab
JQ318830
(AG)10
F:<HEX > <Tail-4 > AATTTACGGCTGTCCGTGAG
173-191
10
0.9688
0.7966
0.7557
0.0000
R:CCTTGGGCTTCATGAACATT
ZJU136ab
JQ318831
(GA)10
F:<HEX > <Tail-4 > TCCCACAGATCTCTAGCCGT
173-201
13
0.7742
0.8953
0.8692
0.0004
R:CGCTCAGTTCTTAATTTCTTACTGTC
ZJU137ab
JQ318832
(TC)8
F:<HEX > <Tail-4 > TGGATCTTGCTGCAGTTGTC
140-168
12
0.1875
0.6930
0.6612
0.0000
R:AGCTAGCACTGGCCTAACCA
ZJU138ab
JQ318833
(CT)10
F:<HEX > <Tail-4 > GCACAGTTGAGTTATGGGCA
152-170
8
0.3333
0.7746
0.7261
0.0001
R:CTCTTTCAAATCCACGCACA
ZJU139ab
JQ318834
(GA)12
F:<HEX > <Tail-4 > CCGAGCTTCGTTAGGACTTG
138-164
6
0.3667
0.4418
0.4043
0.0000
R:CCAACAATACCCGAACCATC
ZJU140b
JQ318835
(CT)14
F:<HEX > <Tail-4 > TGTGCTCATCTTGGATCCTG
172-198
9
0.6538
0.6139
0.5474
0.0000
R:ACATCAGCTTGCATCCCTCT
ZJU141ab
JQ318836
(CT)13
F:<HEX > <Tail-4 > CACAATCAGCTGCAGAATCAA
175-201
11
0.6774
0.7996
0.7600
0.0002
R:AATGGCCGCTTGCAATATAA
ZJU142ab
JQ318837
(TC)13
F:<HEX > <Tail-4 > CATTCACCTCCTTTCGCAAT
166-184
9
0.6774
0.6912
0.6498
0.0231
R:ATCCAACGGCTCAAAGAATG
ZJU143ab
JQ318838
(CT)12
F:<HEX > <Tail-4 > GTAGAGTAGATGCGCCTCGG
181-197
7
0.6923
0.7044
0.6397
0.0000
R:ACGTACGAGCCATACACACG
ZJU144ab
JQ318839
(AG)12
F:<HEX > <Tail-4 > GCCACTCTTCCCTCAACGTA
148-164
7
0.5161
0.6864
0.6252
0.0430
R:CAGGTCAGTCCTGATGGGAT
ZJU145ab
JQ318840
(CT)10
F:<HEX > <Tail-4 > TGTGGCTGTGTTCCTCCATA
155-175
7
0.6875
0.7351
0.6912
0.0000
R:CAATGTTGGGTGCTTTGTTG
ZJU146ab
JQ318841
(AG)10
F:<HEX > <Tail-4 > TGGAAACTTTGTCGTGTGGA
154-168
6
0.2258
0.6663
0.6187
0.0000
R:TTATATCGGGCAGCCAGAAC
ZJU147ab
JQ318842
(AG)10
F:<HEX > <Tail-4 > TTAGGAACCAAACTGGACGG
173-195
10
0.8333
0.7169
0.6811
0.0005
R:TCAAATGCCGTGCTATTGAG
ZJU148ab
JQ318843
(AG)18
F:<HEX > <Tail-4 > AAGAGCAGGAACCGAACCTT
160-190
15
0.9375
0.9067
0.8829
0.4973
R:ACCGAAAGACGAAGAAACGA
ZJU149ab
JQ318844
(TC)8
F:<HEX > <Tail-4 > AGCCCTCCATGTGTGCTTAT
139-163
11
0.8333
0.8718
0.8417
0.0022
R:AGGGAGAGAGTGGTTCTGCC
ZJU150ab
JQ318845
(AG)10
F:<HEX > <Tail-4 > ACTTAACTGAGAGGCTGCGG
163-201
10
0.9000
0.8469
0.8123
0.0053
R:GTGGAAACCGAACGTCCTAA
ZJU151ab
JQ318846
(CA)9
F:<HEX > <Tail-4 > GAATTGGAAATCCCTAGCCC
156-170
6
0.3750
0.5511
0.5188
0.0001
R:CATTTGCGCATGTCTCCTTA
ZJU152ab
JQ318847
(AG)11
F:<HEX > <Tail-4 > AAACGAAGTCGTTCAATGCC
163-181
7
0.9355
0.7578
0.7040
0.0161
R:CTTGATTTGGGCCTTCGATA
ZJU153ab
JQ318848
(AG)10
F:<HEX > <Tail-4 > CCAGCTCCGAATTAGCAAAC
173-191
6
1.0000
0.6667
0.5927
0.0000
R:GTGGCGGTTTATCTCATCGT
ZJU154ab
JQ318849
(AG)11
F:<HEX > <Tail-4 > TTGTCAATTGCCCTTCCTTC
156-184
10
0.9333
0.6847
0.6184
0.0000
R:TTCCTCCCTTTCCCACTTCT
ZJU155ab
JQ318850
(TC)9
F:<HEX > <Tail-4 > GAGAGCAATCAGTGAAGCCC
160-188
8
0.8438
0.6731
0.6037
0.0000
R:GGGAGACGGATGTCGATTTA
ZJU156ab
JQ318851
(TA)8
F:<HEX > <Tail-4 > ATACGTCGAAAGATCCACCG
166-184
7
0.5484
0.6626
0.6063
0.0000
R:TTCTGGAATCCTTCCCATTG
ZJU157ab
JQ318852
(AG)9
F:<HEX > <Tail-4 > CACTCACAACCAAAGCCAGA
154-186
13
0.9677
0.9064
0.8823
0.0171
R:GTGCATAATCACAGGCATGA
ZJU158ab
JQ318853
(AT)10
F:<HEX > <Tail-4 > CCAGATGATCACGCAGCTTA
156-174
9
0.6452
0.8292
0.7917
0.0000
R:CGTCCTCCAATACGTTCCTC
Mean 8.25 0.5636 0.7178 0.6730  

Note: a b c These SSRs are transferable for M. adenophora, M. nana and M. cerifera, respectively. SSR markers are listed according to ascending order in different fluorescent dyes. Shown for each primer pair are the repeat motif, primer sequences, size range (bp), number of alleles detected (Na), observed heterozygosity (Ho), expected heterozygosity (He), polymorphism information content (PIC) and Chi-square test for Hardy-Weinberg equilibrium (PHW). The annealing temperature was 60 °C; a, including length of tail sequences (18 bp total). PHW over 0.05 are underlined.

The PIC at each locus ranged from 0.256 to 0.883 with an average of 0.67 loci. The PCR product size ranged from 110 to 274 bp. All the primers produced amplicons in agreement with the expected sizes. Most of the SSR primers (139 primer pairs) showed significant deviation from HW equilibrium (P < 0.05). Partial correlation analysis showed that significant positive correlations existed between the repeat unit length and PIC (P < 0.01, r = 0.2747). This showed that these SSRs had high rates of transferability for M. adenophora (91.14%) and M. nana (89.87%) and low rates for M. cerifera (46.84%), indicating that these markers are suitable for genetic diversity analyses in other Myrica species.

One of the objectives of this study was to develop potential suitable SSR markers for genetic mapping using Biqi and Dongkui as crossing parents. We selected 99 heterozygous loci in Biqi and 105 in Dongkui (Table 3): 135 primer pairs can be used together in linkage mapping of the planned F1 populations between Biqi and Dongkui.

Table 3.

Distribution of the segregation types expected for the mapping population (Biqi × Dongkui)

Segregation type Alleles Number Mapping in F1
aa × aa
1
12
No
aa × bb
2
11
No
aa × ab
2
24
Yes
ab × aa
2
18
Yes
ab × ab
2
8
Yes
aa × bc
3
12
Yes
ab × cc
3
12
Yes
ab × ac
3
41
Yes
ab × cd
4
20
Yes
Total 135  

Genetic relationship analysis

The 32 accessions were divided into three groups (A, B and C, Figure 4), based on Nei’s genetic distance coefficient [16] using UPGMA cluster analysis. The similarity among all the accessions varied from 0.54 to 0.84. At the species level, the UPGMA dendrogram produced clusters separating M. nana and M. cerifera into two distinct groups. The genetic similarity between M. cerifera and M. rubra was 0.54, lower than the 0.74 previously reported by Xie [6].

Figure 4.

Figure 4

Dendrogram for 32 Chinese bayberry accessions derived from UPGMA cluster analysis based on 158 SSR markers. The symbols before the accession codes indicate the sex: ○, androphyte plant, ●, common cultivars, and ◘, monoecious plant. The numbers are bootstrap values based on 1000 iterations. Only bootstrap values larger than 50 are indicated.

The main cluster ‘A’ included the subgroups A-1 and A-2. Subgroup A-1 includes 16 accessions, mainly from the cities of Ningbo (12) and Hangzhou (3), where the popular and dominant cultivar is Biqi. This demonstrates that these natural elite seedling selections are truly distinct from the local cultivars. For their genetic relationships (Figure 4), the rare monoecious individual (C2010-4) is closely related to Biqi, while the accessions ‘Shuijing’ and ‘Y2010-72’ (both white fruit type) are clearly separated in the cluster, with low genetic distance.

Subgroup A-2 includes 14 accessions, with four from Wenzhou, two from Taizhou, and one each from the cities of Hangzhou and Ningbo, and the Hunan, Guangxi, Guizhou and Jiangsu provinces. This group includes the popular cultivar Dongkui. The four accessions from Wenzhou distributed in this cluster have genetic similarity. The accession ‘Tongzimei’ from the Hunan province is on an independent branch, showing that it is genetically distinct. ‘Xiaolejiangchonghei’ and ‘M. adenophora’ grouped together, and are possibly in the same population. Six androphyte accessions, distributed in group A, are close to cultivars of the same geographic origin.

The accessions ‘Myrica nana’ from Yunnan and ‘Myrica cerifera’ from the USA were independently classified as the ‘B’ and ‘C’ group, indicating a distant relationship with cultivated Myrica rubra.

Discussion

Our major aims were to find a large set of SSR markers for Myrica rubra and understand the genetic diversity and relationship among representative cultivars, androphyate and related species. This research paves the way for constructing an SSR-based linkage map in Myrica.

The genome characteristics of genusMyrica

Shotgun sequencing is suitable for simple genomes, with no or few repeat sequences, such as Chinese bayberry. For such genomes, the genome can largely be assembled simply by merging together reads containing overlapping sequence [17]. We report the genome survey of Chinese bayberry using whole genome shotgun sequencing. The 17-nucleotide depth distribution suggests a genome size of 323 Mb, larger than peach (220 Mb, http://www.rosaceae.org/peach/genome), but close to our estimate of 250 Mb from flow cytometry using rice as the reference (date not shown). Although the highly homozygous material was selected on a limited number of SSR loci assays, the actual heterozygous rate, as revealed by 185 new SSR markers, was very high (63%). To overcome the key issue of heterozygosity and allow us to generate a high-quality genome sequence, we can use a unique homozygous form such as monoploid, derived using tissue culture or from nature and worth further study.

Marker development for under-utilised fruit crops

SSRs have been widely used for high-throughput genotyping and map construction as they have the advantage of high abundance, random distribution within the genome, high polymorphism information content and stable co-dominance [18-20]. They can be developed from either genomic or expressed sequence tag (EST) libraries. Although EST-SSRs are useful for genetic analysis, their disadvantages of relatively low polymorphism and high concentration in gene-rich regions of the genome may limit their usage, especially for the construction of linkage maps [21]. In this study, a total of 600 SSR primer pairs were designed from 28,602 SSR sites, and 581 (96.8%) primer pairs were effective. Due to the self-complementary nature to form dimers, AT/TA is not usually used to develop markers [12]. Our findings are in agreement with that published for peach, where the dinucleotide repeat motifs were also found to be the most common, and (CT)n as the most common repeat unit [22].

In the present study, the mean value of PIC was higher than the previously reported 0.62 [7], but the consistent relationship was observed between SSR polymorphism and repeat unit length. There are some reports of a positive relationship between degree of polymorphism and repeat unit length [23,24]. However, those polymorphic SSRs that are homozygous in both parents cannot be mapped in F1 populations, although they are useful for mapping in F2 or backcross populations [25], while heterozygous SSRs can be used for mapping in F1 populations (Table 2). The estimated number of SSRs that can be mapped in the F1 populations between Biqi and Dongkui was about 85%.

Recently, based on mass sequence data of Chinese bayberry obtained by RNA-Seq, 41,239 UniGenes were identified and approximately 80% of the UniGenes (32,805) were annotated, which provides an excellent platform for future EST-SSR development and functional genomic research [26].

High efficient test methods

Normally, a universal M13 primer is labelled with one of a number of fluorescent dyes. The tailed primer provides a complementary sequence to the fluorescent labelled M13 primer, leading to the amplification of fluorescent PCR products, and then the PCR products of different sizes and/or labelled with different fluorescent dyes are mixed and tested [27]. In this research, a multiplex PCR strategy was designed using the universal M13-tailed primer and three additional tail primers, designed arbitrarily, in presumed four-plex amplifications in single PCR, for a major reduction in cost and time. However, as only a few primer combinations were successful, most resulting in weak bands, we did the PCR individually and mixed the PCR products. Further optimisation of multiplex PCR is needed to evaluate its general applicability.

Evolution ofMyricaspecies

In this study, both cultivated species and wild species were analysed and their genetic diversity could easily be differentiated. M. nana and M. cerifera were clearly genetically distant to M. rubra. M. nana, also known as the dwarf or Yunnan arbutus, is indigenous to the Yunnan and Guizhou provinces, and has a plant height of < 2 m. The juvenile period of fruit tree can be shortened for breeding purposes. Studies on embryo culture in vitro of the F1 seeds of crosses between M. rubra and M. nana, [28], has shown good cross compatibility between M. rubra and M. nana, resulting in 70.5% normal seeds with intact embryo. M. adenophora and M. nana grow as wild trees, with the fruit of M. adenophora only suitable for medical purposes and not edible.

Our findings on the genetic similarity between M. adenophora and M. rubra, which are considered a progenitor-derivative species pair, are consistent with a previously published figure of 0.897 [29]. An earlier study observed little change in allelic diversity along the chronosequence and no evidence for heterosis, although there was a moderate change in genotypic diversity [30]. The markers developed in this study can be very useful in future population structure analysis.

Conclusions

In summary, the genome size of Myrica genus is small, about 320 Mb. A large set of SSRs were developed from a genome survey of Myrica rubra. The results suggest that they have high rates of transferability, making them suitable for use in other Myrica species.

Materials and methods

Plant materials and genome survey

We selected an androphyte ‘C2010-55’ for the genome survey because it was the most homozygous (10 out of 14 SSRs) individual among 230 accessions. Two DNA libraries of 250 and 500 bp insert size were constructed and sequenced by Illumina Hi-Seq 2000.

Twenty-nine accessions of the cultivated species (M. rubra) and 3 related species (M. adenophora, M. nana, M. cerifera), collected from different provinces in China (Table 4), were used to evaluate the suitability of the SSRs for genetic distance analysis. Young leaves were collected and frozen in liquid nitrogen prior to genomic DNA extraction using CTAB methods [4]. DNA concentrations were measured spectrophotometrically at 260 nm, and the extracts electrophoresed on 1% agarose to confirm the quality. The purified DNAs were standardised at 40 ng/μl and stored at -40°C.

Table 4.

The 32 bayberry accessions included in this study

No. Accession Fruit/Flower coloura Fruit maturity date Region
1
Biqi
black
Late June
Cixi, Ningbo, Zhejiang
2
Dongkui
red
Early July
Taizhou, Zhejiang
3
Dayehuang
red
Mid-June
Hangzhou, Zhejiang
4
Dingaomei
black
Mid to late June
Wenzhou, Zhejiang
5
Huangshanbai
white
Early July
Hangzhou, Zhejiang
6
Jiazhaizao
black
Mid-June
Wenzhou, Zhejiang
7
Jianmei
red
Late June
Cixi, Ningbo, Zhejiang
8
Muyemei
black
Late June
Jinhua, Zhejiang
9
Putaoli
black
Mid June
Hangzhou, Zhejiang
10
Shuijing
white
Late June/Early July
Yuyao, Ningbo, Zhejiang
11
Tongzimei
black
Mid-June
Hunan
12
Wandao
black
Early July
Zhoushan, Zhejiang
13
Xiaolejiangchonghei
black
May
Guizhou
14
Biqi12
black
Late June
Yuyao, Ningbo, Zhejiang
15
Y2010-70
red
Late June/Early July
Yuyao, Ningbo, Zhejiang
16
Y2010-71
black
Mid to late June
Yuyao, Ningbo, Zhejiang
17
Y2010-72
white
Late June/Early July
Yuyao, Ningbo, Zhejiang
18
Y2010-73
red
Late June
Yuyao, Ningbo, Zhejiang
19
Y2010-74
red
Late June/Early July
Yuyao, Ningbo, Zhejiang
20
Y2010-75
black
Late June
Yuyao, Ningbo, Zhejiang
21
Y2010-76
white
Late June/Early July
Yuyao, Ningbo, Zhejiang
22
Y2010-77
red
Late June/Early July
Yuyao, Ningbo, Zhejiang
23
C2010-4
red
Late June
Cixi, Ningbo, Zhejiang
24
*C2010-55
red
-
Cixi, Ningbo, Zhejiang
25
*W2011-1
yellow- red
-
Wenzhou, Zhejiang
26
*W2011-5
red
-
Wenzhou, Zhejiang
27
*H2011-12
yellow-green
-
Hangzhou, Zhejiang
28
*JS2011-16
red
-
Suzhou, Jiangsu
29
*T2011-30
red
-
Taizhou, Zhejiang
30
Myrica adenophora
red
February to May
Guilin, Guangxi
31
Myrica nana
red
June to July
Yunnan
32 *Myrica cerifera yellow-green - Cixi, Ningbo, Zhejiang

Note: fruit colour for cultivar and flower colour for androphyte. * selected androphytes.

SSR identification and primer design

We used MISA scripting language ( http://pgrc.ipk-gatersleben.de/misa/misa.html) to identify microsatellite repeats in our sequence database. The SSR loci containing perfect repeat units of 2-6 nucleotides only were considered. The minimum SSR length criteria were defined as six reiterations for dinucleotide, and five reiterations for other repeat units. Mononucleotide repeats and complex SSR types were excluded from the study.

The SSR primers were designed using BatchPrimer3 interface modules ( http://pgrc.ipk-gatersleben.de/misa/primer3.html). We selected 600 primers that met the following parameters: 110–230 final product length, primer size from 18 to 22 bp with an optimum size of 20 bp, and the annealing temperature was set at 60°C. The repeat units over eight were used.

Tail-1(M13 universal sequence-TGTAAAACGACGGCCAGT), Tail-2(CGAGTCAGTATAGGGCAC), Tail-3(ATCACGAAGCAGATGCAA) and Tail-4(GAGCATCTCGTACCAGTC) were added to the 5’ end of each 150 forward primers of pairs respectively. Tail-2, Tail-3 and Tail-4 were designed so that the primer size was 18 bp and the annealing temperature was 53°C. Primers were synthesised by Invitrogen Trading (Shanghai) Co., Ltd. We primarily tested two cultivars (Biqi and Dongkui) and M. cerifera for 600 SSR loci by PAGE (polyacrylamide denaturing gel) to confirm their suitability. Tail-1, Tail-2, Tail-3 and Tail-4 labelled with one of the following dyes: NED, PET, FAM, and HEX, respectively.

Polymerase chain reaction and gel electrophoresis

Each 20 μl reaction mixture contained 10 × PCR buffer (plus Mg2+), 0.2 mM of each dNTP, 5 pmol of each reverse, 4 pmol of the tail primer, 1 pmol of the forward primer, 0.5 units of rTaq polymerase (TaKaRa, China) and 40 ng genomic DNA template. Each primer pair had an interval of 20 bp according to the expected size of amplicons.

DNA amplification was in an Eppendorf Mastercycler (Germany) programmed at 94°C for 5 min for initial denaturation, then 32 cycles at 94°C (30 s)/58°C (30 s)/72°C (30 s), followed by 8 cycles of 94°C (30 s)/53°C (30 s)/72°C (30 s). The final extension step was 10 min at 72°C. Each PCR product was run on 1% agarose gel at 110 V for a quality check.

Subsequently, PCR products were electrophoresed on 8% denaturing PAGE, according to Myers et al. [31], at 60 W in a Sequi-Gen GT Nucleic Acid electrophoresis cell (BioRad) for 4 h, depending on the fragment sizes to be separated, and visualised by silver staining [32]. Genotypes showing one and two bands were scored as homozygous and heterozygous, respectively, and the results recorded and photographed.

Multiplex PCR was designed and tested with products of different sizes and labelled with different fluorescent dyes. Each 20 μl reaction mixture contained 10 × PCR buffer (plus Mg2+), 0.8 mM of each dNTP, 1 unit of rTaq polymerase, 40 ng genomic DNA template and a total of four primer pairs with 5 pmol of each reverse primer, 4 pmol of each tail primer, and 1 pmol of each forward primer. The PCR products were diluted, mixed with the internal size standard LIZ500 (Applied Biosystems) and loaded on an ABI 3130 Genetic Analyzer. Alleles were scored using GeneMapper version 4.0 software (Applied Biosystems, Foster City, CA, USA).

Data analysis

The raw genome sequence data was first filtered to obtain high quality reads, then assembled using SOAP ( http://soap.genomics.org.cn/soapdenovo.html) denovo software to contig, scaffold and fill in gaps. In addition, we used SSPACE software to build the scaffold. K-mer analysis was to help estimate the genome size and characters, such as heterozygosis and repeats.

The number of alleles (A), observed heterozygosity (Ho) and expected heterozygosity (He) were calculated using POPGENE version 1.32 ( http://www.ualberta.ca/~fyeh/popgene_download.html). Chi-square test for Hardy-Weinberg equilibrium allele frequencies and polymorphism information content (PIC) was calculated using PowerMarker version 3.25 [33] ( http://statgen.ncsu.edu/powermarker/downloads.htm). Microsoft office Excel 2007 was used to analyse the correlation. Genetic similarity among all the accessions was calculated according to Dice’s coefficients using Nei's coefficient index [16] with the Free Tree 0.9.1.50 [34] ( http://www.natur.cuni.cz/~flegr/programs/freetree.htm) software, and the dendrogram constructed using the unweighted pair-group method with arithmetic averaging (UPGMA) option. The confidence of branch support was then evaluated by bootstrap analysis with 1,000 replicates. The dendrogram was printed using MEGA version 5.05 software [35] ( http://www.megasoftware.net/mega.php).

Authors’ contributions

ZSG: HJJ: EVW and MLC designed the experiments. YJ: CYC: GYW collected plant materials. YJ: HMJ and XWL performed the SSR experiments and analysed the data. The whole genome shotgun and sequencing assembly was performed by ZC. YJ: ZSG and EVW drafted this manuscript.

Supplementary Material

Additional file 1

Occurrence of different SSRs in the genome survey of Chinese bayberry.

Click here for file (180KB, doc)

Contributor Information

Yun Jiao, Email: jydyx@163.com.

Hui-min Jia, Email: jiahuimin1988@163.com.

Xiong-wei Li, Email: lixiongweisea@yahoo.com.cn.

Ming-liang Chai, Email: mlchai@zju.edu.cn.

Hui-juan Jia, Email: jiahuijuan@zju.edu.cn.

Zhe Chen, Email: chenzhe2@genomics.org.cn.

Guo-yun Wang, Email: yywgy@sina.com.

Chun-yan Chai, Email: cxccy@sina.com.

Eric van de Weg, Email: eric.vandeweg@wur.nl.

Zhong-shan Gao, Email: gaozhongshan@zju.edu.cn.

Acknowledgements

This work was supported by grants from the Zhejiang Province (2006 C14016) and Special Research Fund for International Cooperation with European Union (1114) and Public Welfare in Chinese Agriculture (contract no. 200903044) We thank Dr Rangjin Xie for technical assistance in the PAGE experiment, and Dr. Shirley Burgess for correcting the English.

Author details

1Department of Horticulture, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, China. 2BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China. 3Fruit Research Institute, Yuyao, Ningbo 315400, China. 4Forestry Technology Extension Center, Cixi Ningbo 315300, China. 5Plant Breeding-Wageningen University and Research Centre, P.O. Box 166700 AA, Wageningen, The Netherlands.

References

  1. Chen K, Xu C, Zhang B, Ferguson IB. In: Red bayberry: botany and horticulture, in Horticultural Reviews. Jules Janick, editor. John Wiley & Sons, Inc, Oxford; 2004. pp. 83–114. 30. [Google Scholar]
  2. Zhang B, Kang MX, Xie QP, Xu B, Sun CD, Chen KS, Wu YL. Anthocyanins from Chinese bayberry extract protect beta cells from oxidative stress-mediated injury via HO-1 upregulation. J Agr Food Chem. 2011;59(2):537–545. doi: 10.1021/jf1035405. [DOI] [PubMed] [Google Scholar]
  3. Terakawa M, Kikuchi S, Kanetani S, Matsui K, Yumoto T, Yoshimaru H. Characterization of 13 polymorphic microsatellite loci for an evergreen tree, Myrica rubra. Mol Ecol Notes. 2006;6(3):709–711. doi: 10.1111/j.1471-8286.2006.01318.x. [DOI] [Google Scholar]
  4. Zhang SM, Xu CJ, Gao ZS, Chen KS, Wang GY. Development and characterization of microsatellite markers for Chinese bayberry (Myrica rubra Sieb. & Zucc.) Conserv Genet. 2009;10(5):1605–1607. doi: 10.1007/s10592-008-9804-x. [DOI] [Google Scholar]
  5. Xie XB, Qiu YY, Ke LP, Zheng XL, Wu GT, Chen JQ, Qi XJ, Ahn S. Microsatellite primers in red bayberry, myrica rubra (Myricaceae) Am J Bot. 2011;98(4):E93–E95. doi: 10.3732/ajb.1000271. [DOI] [PubMed] [Google Scholar]
  6. Xie R-J, Zhou J, Wang G-Y, Zhang S-M, Chen L, Gao Z-S. Cultivar identification and genetic diversity of chinese bayberry (Myrica rubra) accessions based on fluorescent SSR markers. Plant Mol Biol Rep. 2011;29(3):554–562. doi: 10.1007/s11105-010-0261-6. [DOI] [Google Scholar]
  7. Zhang SM, Gao ZS, Xu CJ, Chen KS. Genetic diversity of Chinese bayberry (Myrica rubra Sieb. et Zucc.) accessions revealed by Amplified Fragment Length Polymorphism. HortSci. 2009;44(2):487–491. [Google Scholar]
  8. Cheng YJ, Zhang R, Zhu AD, Wang XJ, Yu J, Zhang HR, Gao JS, Deng XX. Development of Juglans regia SSR Markers by data mining of the EST database. Plant Mol Biol Rep. 2010;28(4):646–653. doi: 10.1007/s11105-010-0192-2. [DOI] [Google Scholar]
  9. Aravanopoulos FA, Ganopoulos IV, Avramidou E, Fasoula DA, Diamantidis G. Assessing inter- and intra-cultivar variation in Greek Prunus avium by SSR markers. Plant Genet Resour-C. 2010;8(3):242–248. doi: 10.1017/S1479262110000298. [DOI] [Google Scholar]
  10. Audergon JM, Bourguiba H, Khadari B, Krichen L, Trifi-Farah N, Santoni S. Grafting versus seed propagated apricot populations: two main gene pools in Tunisia evidenced by SSR markers and model-based Bayesian clustering. Genetica. 2010;138(9–10):1023–1032. doi: 10.1007/s10709-010-9488-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Baudouin L, Martinez RT, Berger A, Dollet M. Characterization of the genetic diversity of the Tall coconut (Cocos nucifera L.) in the Dominican Republic using microsatellite (SSR) markers. Tree Genet Genomes. 2010;6(1):73–81. doi: 10.1007/s11295-009-0229-6. [DOI] [Google Scholar]
  12. Wu YQ, Wang YW, Samuels TD. Development of 1,030 genomic SSR markers in switchgrass. Theor Appl Genet. 2011;122(4):677–686. doi: 10.1007/s00122-010-1477-4. [DOI] [PubMed] [Google Scholar]
  13. Goff SA. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica) (April, pg 92, 2002) Science. 2005;309(5736):879–879. doi: 10.1126/science.1068275. [DOI] [PubMed] [Google Scholar]
  14. Wang J, Chen C, Na J-K, Yu Q, Hou S, Paull R, Moore P, Alam M, Ming R. Genome-wide comparative analyses of microsatellites in papaya. Tropical Plant Biology. 2008;1(3):278–292. doi: 10.1007/s12042-008-9024-z. [DOI] [Google Scholar]
  15. Schuelke M. An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol. 2000;18(2):233–234. doi: 10.1038/72708. [DOI] [PubMed] [Google Scholar]
  16. Nei M. Genetic Distance between Populations. Am Nat. 1972;106(949):283–292. doi: 10.1086/282771. [DOI] [Google Scholar]
  17. Batzoglou S, Jaffe DB, Stanley K, Butler J, Gnerre S, Mauceli E, Berger B, Mesirov JP, Lander ES. ARACHNE: A whole-genome shotgun assembler. Genome Res. 2002;12(1):177–189. doi: 10.1101/gr.208902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Watanabe KN, Hirano R, Ishii H, Oo TH, Gilani SA, Kikuchi A. Propagation management methods have altered the genetic variability of two traditional mango varieties in Myanmar, as revealed by SSR. Plant Genet Resour-C. 2011;9(3):404–410. doi: 10.1017/S1479262111000049. [DOI] [Google Scholar]
  19. Chen C, Zhou P, Choi Y, Huang S, Gmitter F. Mining and characterizing microsatellites from citrus ESTs. Theor Appl Genet. 2006;112(7):1248–1257. doi: 10.1007/s00122-006-0226-1. [DOI] [PubMed] [Google Scholar]
  20. Fraser LG, Harvey CF, Crowhurst RN, De Silva HN. EST-derived microsatellites from Actinidia species and their potential for mapping. Theor Appl Genet. 2004;108(6):1010–1016. doi: 10.1007/s00122-003-1517-4. [DOI] [PubMed] [Google Scholar]
  21. McCouch SR, Cho YG, Ishii T, Temnykh S, Chen X, Lipovich L, Park WD, Ayres N, Cartinhour S. Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativa L.) Theor Appl Genet. 2000;100(5):713–722. doi: 10.1007/s001220051343. [DOI] [Google Scholar]
  22. Sosinski B, Gannavarapu M, Hager LD, Beck LE, King GJ, Ryder CD, Rajapakse S, Baird WV, Ballard RE, Abbott AG. Characterization of microsatellite markers in peach [Prunus persica (L.) Batsch] Theor Appl Genet. 2000;101(3):421–428. doi: 10.1007/s001220051499. [DOI] [Google Scholar]
  23. Cuc LM, Mace ES, Crouch JH, Quang VD, Long TD, Varshney RK. Isolation and characterization of novel microsatellite markers and their application for diversity assessment in cultivated groundnut (Arachis hypogaea) BMC Plant Biol. 2008;8 doi: 10.1186/1471-2229-8-55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kapila RK, Yadav RS, Plaha P, Rai KN, Yadav OP, Hash CT, Howarth CJ. Genetic diversity among pearl millet maintainers using microsatellite markers. Plant Breeding. 2008;127(1):33–37. [Google Scholar]
  25. Lu J, Huang H, Ren ZB, Hunter W, Dowd SE, Dang P. Mining and validating grape (Vitis L.) ESTs to develop EST-SSR markers for genotyping and mapping. Mol Breeding. 2011;28(2):241–254. doi: 10.1007/s11032-010-9477-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Feng C, Chen M, Xu CJ, Bai L, Yin XR, Li X, Allan AC, Ferguson IB, Chen KS. Transcriptomic analysis of Chinese bayberry (Myrica rubra) fruit development and ripening using RNA-Seq. BMC Genomics. 2012;13(1):19. doi: 10.1186/1471-2164-13-19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Han Y, Zheng D, Vimolmangkang S, Khan MA, Beever JE, Korban SS. Integration of physical and genetic maps in apple confirms whole-genome and segmental duplications in the apple genome. J Exp Bot. 2011;62(14):5117–5130. doi: 10.1093/jxb/err215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Xie XB, Qiu YY, Zheng XL, Qi XJ, Qiu LJ, Huang ZP, Wang T, Liang SM. Studies on the crossing between Myrica rubra and M. nana and embryo culture in vitro of hybrid F1. Journal of Fruit Science. 2009;26(4):507–510. [Google Scholar]
  29. Cheng YP, Chien CT, Lin TP. Population genetics of geographically restricted and widespread species of Myrica (Myricaceae) J Hered. 2000;91(1):61–66. doi: 10.1093/jhered/91.1.61. [DOI] [PubMed] [Google Scholar]
  30. Erickson DL, Hamrick JL. Genetic and clonal diversity for Myrica cerifera along a spatiotemporal island chronosequence. Heredity. 2003;90(1):25–32. doi: 10.1038/sj.hdy.6800172. [DOI] [PubMed] [Google Scholar]
  31. Myers RM, Maniatis T, Lerman LS. Detection and localization of single base changes by denaturing gradient gel-electrophoresis. Method Enzymol. 1987;155:501–527. doi: 10.1016/0076-6879(87)55033-9. [DOI] [PubMed] [Google Scholar]
  32. Bassam BJ, Caetanoanolles G. Silver staining of DNA in polyacrylamide gels. Appl Biochem Biotech. 1993;42(2–3):181–188. [Google Scholar]
  33. Liu KJ, Muse SV. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics. 2005;21(9):2128–2129. doi: 10.1093/bioinformatics/bti282. [DOI] [PubMed] [Google Scholar]
  34. Hampl V, Pavlicek A, Flegr J. Construction and bootstrap analysis of DNA fingerprinting-based phylogenetic trees with the freeware program FreeTree: application to trichomonad parasites. Int J Syst Evol Micr. 2001;51:731–735. doi: 10.1099/00207713-51-3-731. [DOI] [PubMed] [Google Scholar]
  35. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28(10):2731–2739. doi: 10.1093/molbev/msr121. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Additional file 1

Occurrence of different SSRs in the genome survey of Chinese bayberry.

Click here for file (180KB, doc)

Articles from BMC Genomics are provided here courtesy of BMC

RESOURCES