Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Dec;77(12):7487–7491. doi: 10.1073/pnas.77.12.7487

Microinjection of catalytic subunit of cyclic AMP-dependent protein kinase enhances calcium action potentials of bag cell neurons in cell culture

L K Kaczmarek *, K R Jennings *, F Strumwasser *, A C Nairn , U Walter , F D Wilson , P Greengard
PMCID: PMC350530  PMID: 6261262

Abstract

We have found that the calcium action potentials of bag cell neurons from the abdominal ganglion of Aplysia may be enhanced by intracellular microinjection of the catalytic subunit of cyclic AMP-dependent protein kinase (ATP:protein phosphotransferase, EC 2.7.1.37). The catalytic subunit was purified from bovine heart and shown to be effective in stimulating the phosphorylation of bag cell proteins in homogenates at concentrations of 10-50 nM. Intracellular injection into isolated bag cell neurons maintained in primary culture was through pressure applied to microelectrodes filled at the tip with catalytic subunit (5-22 μM). In 11 of 16 injected cells, both the slope of the rising phase and the height of the action potentials evoked by a constant depolarizing current were markedly enhanced relative to the pre-injection control (mean increases, 73% and 35%, respectively). This effect could occur with no change in resting potential or in the latency of the action potential from the onset of the depolarizing pulse. The effect was observed with enzyme dissolved in three different salt solutions (Na phosphate, K phosphate, or KCl). In two experiments, tetrodotoxin (50 μM) added to the extracellular medium had no effect on the enhanced action potentials. Subsequent addition of the calcium antagonist Co2+, however, diminished or abolished the spikes. In more than half of the experiments, the injection of catalytic subunit was accompanied by an increase in the input resistance of the cells as measured by applying small hyperpolarizing current pulses. In three experiments, subthreshold oscillations in membrane potential resulted from the injections. Control injections (24 cells), carried out either with carrier medium alone or with heat-inactivated enzyme preparations, did not produce spike enhancement, increased input resistance, or oscillations. Our data suggest that the stimulation of intracellular protein phosphorylation by the catalytic subunit of cyclic AMP-dependent protein kinase enhances the excitability of bag cell neurons by modifying calcium and potassium channels or currents.

Keywords: Aplysia, protein phosphorylation

Full text

PDF
7487

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aldrich R. W., Jr, Getting P. A., Thompson S. H. Inactivation of delayed outward current in molluscan neurone somata. J Physiol. 1979 Jun;291:507–530. doi: 10.1113/jphysiol.1979.sp012828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ashby C. D., Walsh D. A. Characterization of the interaction of a protein inhibitor with adenosine 3',5'-monophosphate-dependent protein kinases. I. Interaction with the catalytic subunit of the protein kinase. J Biol Chem. 1972 Oct 25;247(20):6637–6642. [PubMed] [Google Scholar]
  3. Beavo J. A., Bechtel P. J., Krebs E. G. Preparation of homogeneous cyclic AMP-dependent protein kinase(s) and its subunits from rabbit skeletal muscle. Methods Enzymol. 1974;38:299–308. doi: 10.1016/0076-6879(74)38046-9. [DOI] [PubMed] [Google Scholar]
  4. Blankenship J. E., Haskins J. T. Electrotonic coupling among neuroendocrine cells in Aplysia. J Neurophysiol. 1979 Mar;42(2):347–355. doi: 10.1152/jn.1979.42.2.347. [DOI] [PubMed] [Google Scholar]
  5. Castellucci V. F., Kandel E. R., Schwartz J. H., Wilson F. D., Nairn A. C., Greengard P. Intracellular injection of t he catalytic subunit of cyclic AMP-dependent protein kinase simulates facilitation of transmitter release underlying behavioral sensitization in Aplysia. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7492–7496. doi: 10.1073/pnas.77.12.7492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Corbin J. D., Sugden P. H., West L., Flockhart D. A., Lincoln T. M., McCarthy D. Studies on the properties and mode of action of the purified regulatory subunit of bovine heart adenosine 3':5'-monophosphate-dependent protein kinase. J Biol Chem. 1978 Jun 10;253(11):3997–4003. [PubMed] [Google Scholar]
  7. Dudek F. E., Blankenship J. E. Neuroendocrine cells of Aplysia brasiliana. I. Bag cell action potentials and afterdischarge. J Neurophysiol. 1977 Nov;40(6):1301–1311. doi: 10.1152/jn.1977.40.6.1301. [DOI] [PubMed] [Google Scholar]
  8. Kaczmarek L. K., Finbow M., Revel J. P., Strumwasser F. The morphology and coupling of Aplysia bag cells within the abdominal ganglion and in cell culture. J Neurobiol. 1979 Nov;10(6):535–550. doi: 10.1002/neu.480100604. [DOI] [PubMed] [Google Scholar]
  9. Kaczmarek L. K., Jennings K., Strumwasser F. Neurotransmitter modulation, phosphodiesterase inhibitor effects, and cyclic AMP correlates of afterdischarge in peptidergic neurites. Proc Natl Acad Sci U S A. 1978 Oct;75(10):5200–5204. doi: 10.1073/pnas.75.10.5200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kupfermann I., Kandel E. R. Electrophysiological properties and functional interconnections of two symmetrical neurosecretory clusters (bag cells) in abdominal ganglion of Aplysia. J Neurophysiol. 1970 Nov;33(6):865–876. doi: 10.1152/jn.1970.33.6.865. [DOI] [PubMed] [Google Scholar]
  11. LEIBOVITZ A. THE GROWTH AND MAINTENANCE OF TISSUE-CELL CULTURES IN FREE GAS EXCHANGE WITH THE ATMOSPHERE. Am J Hyg. 1963 Sep;78:173–180. doi: 10.1093/oxfordjournals.aje.a120336. [DOI] [PubMed] [Google Scholar]
  12. McCaman R. E., McKenna D. G., Ono J. K. A pressure system for intracellular and extracellular ejections of picoliter volumes. Brain Res. 1977 Nov 4;136(1):141–147. doi: 10.1016/0006-8993(77)90138-x. [DOI] [PubMed] [Google Scholar]
  13. Moody W., Jr Appearance of calcium action potentials in crayfish slow muscle fibres under conditions of low intracellular pH. J Physiol. 1980 May;302:335–346. doi: 10.1113/jphysiol.1980.sp013246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rubin C. S., Rosen O. M. Protein phosphorylation. Annu Rev Biochem. 1975;44:831–887. doi: 10.1146/annurev.bi.44.070175.004151. [DOI] [PubMed] [Google Scholar]
  15. Treistman S. N., Levitan I. B. Alteration of electrical activity in molluscan neurones by cyclic nucleotides and peptide factors. Nature. 1976 May 6;261(5555):62–64. doi: 10.1038/261062a0. [DOI] [PubMed] [Google Scholar]
  16. Witt J. J., Roskoski R., Jr Rapid protein kinase assay using phosphocellulose-paper absorption. Anal Biochem. 1975 May 26;66(1):253–258. doi: 10.1016/0003-2697(75)90743-5. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES