Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1981 Sep;33(3):658–665. doi: 10.1128/iai.33.3.658-665.1981

Interaction of cytomegalovirus immune complexes with host cells.

B B Rundell, R F Betts
PMCID: PMC350758  PMID: 6269997

Abstract

After adsorption to host cells of a mixture of cytomegalovirus (CMV) and immunoglobulin G (IgG)-anti CMV, at least 99% of the surviving fraction consisted of infectious virus-antibody complexes which could be neutralized by anti-human IgG antibody. The virus-antibody complexes penetrated into cells and were uncoated more slowly than native virus. When the virus-antibody complexes were treated with anti-human IgG antibody before adsorption was allowed to take place, anti-human IgG antibody immune complexes were adsorbed to host cells less readily and uncoated less efficiently than were untreated complexes. Furthermore, after adsorption, anti-human IgG antibody-IgG-CMV complexes were further retarded in their penetration and uncoating. These observations suggest that neutralization of CMV by IgG-anti-CMV resulted from interference with the normal mechanisms of penetration and uncoating. Anti-human IgG antibody enhanced the degree of neutralization by augmenting the inhibitory effect of antibody on these stages of virus-host interaction and also reduced adsorption of the complex.

Full text

PDF
658

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen H. K. Serologic differentiation of human cytomegalovirus strains using rabbit hyperimmune sera. Brief report. Arch Gesamte Virusforsch. 1971;33(1):187–191. doi: 10.1007/BF01254177. [DOI] [PubMed] [Google Scholar]
  2. Andersen H. K. Studies of human cytomegalovirus strain variations by kinetic neutralization tests. Arch Gesamte Virusforsch. 1972;38(4):297–305. doi: 10.1007/BF01262820. [DOI] [PubMed] [Google Scholar]
  3. Andersen H. K. The influence of complement on cytomegalovirus neutralization by antibodies. Arch Gesamte Virusforsch. 1972;36(1):133–140. doi: 10.1007/BF01250303. [DOI] [PubMed] [Google Scholar]
  4. Craighead J. E. Immunologic response to cytomegalovirus infection in renal allograft recipients. Am J Epidemiol. 1969 Dec;90(6):506–513. doi: 10.1093/oxfordjournals.aje.a121096. [DOI] [PubMed] [Google Scholar]
  5. DALES S., KAJIOKA R. THE CYCLE OF MULTIPLICATION OF VACCINIA VIRUS IN EARLE'S STRAIN L CELLS. I. UPTAKE AND PENETRATION. Virology. 1964 Nov;24:278–294. doi: 10.1016/0042-6822(64)90167-9. [DOI] [PubMed] [Google Scholar]
  6. Dourmashkin R. R., Tyrrell D. A. Electron microscopic observations on the entry of influenza virus into susceptible cells. J Gen Virol. 1974 Jul;24(1):129–141. doi: 10.1099/0022-1317-24-1-129. [DOI] [PubMed] [Google Scholar]
  7. Graham B. J., Minamishima Y., Dresman G. R., Haines H. G., Benyesh-Melnick M. Complement-requiring neutralizing antibodies in hyperimmune sera to human cytomegaloviruses. J Immunol. 1971 Dec;107(6):1618–1630. [PubMed] [Google Scholar]
  8. HOLLAND J. J., HOYER B. H. Early stages of enterovirus infection. Cold Spring Harb Symp Quant Biol. 1962;27:101–112. doi: 10.1101/sqb.1962.027.001.013. [DOI] [PubMed] [Google Scholar]
  9. Hebert G. A., Pelham P. L., Pittman B. Determination of the optimal ammonium sulfate concentration for the fractionation of rabbit, sheep, horse, and goat antisera. Appl Microbiol. 1973 Jan;25(1):26–36. doi: 10.1128/am.25.1.26-36.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Howe C., Morgan C. Interactions between Sendai virus and human erythrocytes. J Virol. 1969 Jan;3(1):70–81. doi: 10.1128/jvi.3.1.70-81.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. JOKLIK W. K. THE INTRACELLULAR FATE OF RABBITPOX VIRUS RENDERED NONINFECTIOUS BY VARIOUS REAGENTS. Virology. 1964 Apr;22:620–633. doi: 10.1016/0042-6822(64)90084-4. [DOI] [PubMed] [Google Scholar]
  12. JOKLIK W. K. THE INTRACELLULAR UNCOATING OF POXVIRUS DNA. I. THE FATE OF RADIOACTIVELY-LABELED RABBITPOX VIRUS. J Mol Biol. 1964 Feb;8:263–276. doi: 10.1016/s0022-2836(64)80136-4. [DOI] [PubMed] [Google Scholar]
  13. Kekwick R. A. The serum proteins in multiple myelomatosis. Biochem J. 1940 Sep;34(8-9):1248–1257. doi: 10.1042/bj0341248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Krech U., Jung M. The development of neutralizing antibodies in guinea pigs following immunization with human cytomegalovirus. Arch Gesamte Virusforsch. 1969;28(2):248–250. doi: 10.1007/BF01249391. [DOI] [PubMed] [Google Scholar]
  15. Mandel B. The interaction of neutralized poliovirus with HeLa cells. I. Adsorption. Virology. 1967 Feb;31(2):238–247. doi: 10.1016/0042-6822(67)90167-5. [DOI] [PubMed] [Google Scholar]
  16. Morgan C., Rose H. M., Mednis B. Electron microscopy of herpes simplex virus. I. Entry. J Virol. 1968 May;2(5):507–516. doi: 10.1128/jvi.2.5.507-516.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. RUBIN H., FRANKLIN R. M. On the mechanism of Newcastle disease virus neutralization by immune serum. Virology. 1957 Feb;3(1):84–95. doi: 10.1016/0042-6822(57)90025-9. [DOI] [PubMed] [Google Scholar]
  18. Reynolds D. W., Stagno S., Reynolds R., Alford C. A., Jr Perinatal cytomegalovirus infection: influence of placentally transferred maternal antibody. J Infect Dis. 1978 May;137(5):564–567. doi: 10.1093/infdis/137.5.564. [DOI] [PubMed] [Google Scholar]
  19. Rundell B. B., Betts R. F. Physical properties of cytomegalorvirus immune complexes prepared with IgG neutralizing antibody, anti-IgG, and complement. J Immunol. 1980 Jan;124(1):337–342. [PubMed] [Google Scholar]
  20. SILVERSTEIN S. C., MARCUS P. I. EARLY STAGES OF NEWCASTLE DISEASE VIRUS-HELA CELL INTERACTION: AN ELECTRON MICROSCOPIC STUDY. Virology. 1964 Jul;23:370–380. doi: 10.1016/0042-6822(64)90259-4. [DOI] [PubMed] [Google Scholar]
  21. Smith J. D., de Harven E. Herpes simplex virus and human cytomegalovirus replication in WI-38 cells. II. An ultrastructural study of viral penetration. J Virol. 1974 Oct;14(4):945–956. doi: 10.1128/jvi.14.4.945-956.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Stagno S., Volanakis J. E., Reynolds D. W., Stroud R., Alford C. A. Immune complexes in congenital and natal cytomegalovirus infections of man. J Clin Invest. 1977 Oct;60(4):838–845. doi: 10.1172/JCI108838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Stinski M. F., Cunningham C. H. Antibody-neutralized avian infectious bronchitis virus in chicken embryo kidney cells: entry and degradation. J Gen Virol. 1970 Sep;8(3):173–186. doi: 10.1099/0022-1317-8-3-173. [DOI] [PubMed] [Google Scholar]
  24. WELLER T. H., HANSHAW J. B., SCOTT D. E. Serologic differentiation of viruses responsible for cytomegalic inclusion disease. Virology. 1960 Sep;12:130–132. doi: 10.1016/0042-6822(60)90156-2. [DOI] [PubMed] [Google Scholar]
  25. Waner J. L., Weller T. H. Analysis of antigenic diversity among human cytomegaloviruses by kinetic neutralization tests with high-titered rabbit antisera. Infect Immun. 1978 Jul;21(1):151–157. doi: 10.1128/iai.21.1.151-157.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wentworth B. B., French L. Plaque assay of cytomegalovirus strains of human origin. Proc Soc Exp Biol Med. 1970 Nov;135(2):253–258. doi: 10.3181/00379727-135-35031. [DOI] [PubMed] [Google Scholar]
  27. Yeager A. S., Grumet F. C., Hafleigh E. B., Arvin A. M., Bradley J. S., Prober C. G. Prevention of transfusion-acquired cytomegalovirus infections in newborn infants. J Pediatr. 1981 Feb;98(2):281–287. doi: 10.1016/s0022-3476(81)80662-2. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES