Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1981 Oct;34(1):120–125. doi: 10.1128/iai.34.1.120-125.1981

Enhancement of Neisseria meningitidis infection in mice by addition of iron bound to transferrin.

B E Holbein
PMCID: PMC350830  PMID: 6795121

Abstract

Small quantities of iron bound specifically to human transferrin were found to stimulate infection with Neisseria meningitidis strain M1011 in mice. An intraperitoneal injection of 17.5 mg of transferrin carrying 22.7 micrograms of Fe resulted in 100% mortality from infection, as compared with no mortality for the controls which had received saline. Five milligrams of ferri-transferrin (FeTf), carrying 6.5 micrograms of Fe, stimulated and prolonged bacteremia in the mice. Thus, FeTf maintained infection, whereas infection was controlled due to iron limitation in control mice. Comparative studies with apotransferrin (iron-free) revealed that the enhancement of infection was due to the supply of iron. FeTf was also found to relieve an iron limitation of growth achieved by ethylenediaminedihydroxyphenylacetic acid (EDDA) in vitro. FeTf abolished the lag phase for growth of N. meningitidis in a defined medium. The results of this study suggest that human FeTf is an immediate source of iron to N. meningitidis both in vitro and in vivo. These findings support the hypothesis that the levels of iron in the circulating transferrin pool of mice determine the course of experimental N. meningitidis infection.

Full text

PDF
120

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aisen P., Leibman A., Zweier J. Stoichiometric and site characteristics of the binding of iron to human transferrin. J Biol Chem. 1978 Mar 25;253(6):1930–1937. [PubMed] [Google Scholar]
  2. Aisen P., Listowsky I. Iron transport and storage proteins. Annu Rev Biochem. 1980;49:357–393. doi: 10.1146/annurev.bi.49.070180.002041. [DOI] [PubMed] [Google Scholar]
  3. Archibald F. S., DeVoe I. W. Iron acquisition by Neisseria meningitidis in vitro. Infect Immun. 1980 Feb;27(2):322–334. doi: 10.1128/iai.27.2.322-334.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Archibald F. S., DeVoe I. W. Iron in Neisseria meningitidis: minimum requirements, effects of limitation, and characteristics of uptake. J Bacteriol. 1978 Oct;136(1):35–48. doi: 10.1128/jb.136.1.35-48.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Beisel W. R. Magnitude of the host nutritional responses to infection. Am J Clin Nutr. 1977 Aug;30(8):1236–1247. doi: 10.1093/ajcn/30.8.1236. [DOI] [PubMed] [Google Scholar]
  6. Beisel W. R. Trace element in infectious processes. Med Clin North Am. 1976 Jul;60(4):831–849. doi: 10.1016/s0025-7125(16)31864-8. [DOI] [PubMed] [Google Scholar]
  7. Bullen J. J., Rogers H. J., Griffiths E. Role of iron in bacterial infection. Curr Top Microbiol Immunol. 1978;80:1–35. doi: 10.1007/978-3-642-66956-9_1. [DOI] [PubMed] [Google Scholar]
  8. Griffiths E., Humphreys J. Isolation of enterochelin from the peritoneal washings of guinea pigs lethally infected with Escherichia coli. Infect Immun. 1980 Apr;28(1):286–289. doi: 10.1128/iai.28.1.286-289.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Holbein B. E. Iron-controlled infection with Neisseria meningitidis in mice. Infect Immun. 1980 Sep;29(3):886–891. doi: 10.1128/iai.29.3.886-891.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Holbein B. E., Jericho K. W., Likes G. C. Neisseria meningitidis infection in mice: influence of iron, variations in virulence among strains, and pathology. Infect Immun. 1979 May;24(2):545–551. doi: 10.1128/iai.24.2.545-551.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kochan I., Kvach J. T., Wiles T. I. Virulence-associated acquisition of iron in mammalian serum by Escherichia coli. J Infect Dis. 1977 Apr;135(4):623–632. doi: 10.1093/infdis/135.4.623. [DOI] [PubMed] [Google Scholar]
  12. Octave J. N., Schneider Y. J., Hoffmann P., Trouet A., Crichton R. R. Transferrin protein and iron uptake by cultured rat fibroblasts. FEBS Lett. 1979 Dec 1;108(1):127–130. doi: 10.1016/0014-5793(79)81193-x. [DOI] [PubMed] [Google Scholar]
  13. Payne S. M., Finkelstein R. A. The critical role of iron in host-bacterial interactions. J Clin Invest. 1978 Jun;61(6):1428–1440. doi: 10.1172/JCI109062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Weinberg E. D. Iron and infection. Microbiol Rev. 1978 Mar;42(1):45–66. doi: 10.1128/mr.42.1.45-66.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES