Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1981 Dec;34(3):871–879. doi: 10.1128/iai.34.3.871-879.1981

Effect of human saliva on the fluoride sensitivity of glucose uptake by Streptococcus mutans.

G R Germaine, L M Tellefson
PMCID: PMC350950  PMID: 7333673

Abstract

The fluoride (F) sensitivity of glucose uptake by whole cell suspensions of streptococcus mutans in the presence and absence of human whole salivary supernatant was studied. It was observed that dithiothreitol (DTT) and other thiols markedly reduced the F sensitivity of cells when saliva (50%, vol/vol) was present during glucose uptake. In the absence of saliva, cells were sensitive to 2 to 2.5 mM F regardless of the presence of thiols. Supplementation of cells in phosphate or tris(hydroxymethyl)aminomethane-hydrochloride buffers with physiological concentrations of calcium or phosphate had no effect on the F sensitivity of the organism. Experiments with permeabilized cells suggested that thiols themselves had no direct effect on the F sensitivity of enolase (a principal F target). Cells pretreated with DDT subsequently exhibited decreased F sensitivity when examined in the presence of saliva but not in the absence of saliva. Cells pretreated with whole salivary supernatant were found to be subsequently less sensitive to F in the absence of saliva during glucose uptake. Furthermore, in cases where cells were pretreated with saliva, subsequent additions of DDT were unnecessary to obtain maximal reduction in the F sensitivity of glucose uptake. It was concluded that the saliva-dependent reduction in F sensitivity of glucose uptake was not due to sequestration of available F by salivary constituents. The data suggest that a salivary component(s) interacts directly with the microorganism in some manner which results in reduced F sensitivity of the process under study. Possible mechanisms of saliva action are discussed.

Full text

PDF
871

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong W. G. Characterisation studies on the specific human salivary proteins adsorbed in vitro by hydroxyapatite. Caries Res. 1971;5(3):215–227. doi: 10.1159/000259749. [DOI] [PubMed] [Google Scholar]
  2. Birkeland J. M. Fluoride ion activity in vitro and in vivo of two sodium fluoride dentifrices. Caries Res. 1971;5(3):193–201. doi: 10.1159/000259747. [DOI] [PubMed] [Google Scholar]
  3. Birkeland J. M., Rölla G. In-vitro affinity of fluoride to proteins, dextrans, bacteria and salivary components. Arch Oral Biol. 1972 Mar;17(3):455–463. doi: 10.1016/0003-9969(72)90061-1. [DOI] [PubMed] [Google Scholar]
  4. Birkeland J. M. The effect of pH on the interaction of fluoride and salivary ions. Caries Res. 1973;7(1):11–18. doi: 10.1159/000259820. [DOI] [PubMed] [Google Scholar]
  5. COOMBS T. L., FELBER J. P., VALLEE B. L. Metallocarboxpeptidases: mechanism of inhibition by chelating agents, mercaptans, and metal ions. Biochemistry. 1962 Sep;1:899–905. doi: 10.1021/bi00911a024. [DOI] [PubMed] [Google Scholar]
  6. Cimasoni G. The inhibition of enolase by fluoride in vitro. Caries Res. 1972;6(2):93–102. doi: 10.1159/000259782. [DOI] [PubMed] [Google Scholar]
  7. Cornell N. W., Crivaro K. E. Stability constant for the zinc-dithiothreitol complex. Anal Biochem. 1972 May;47(1):203–208. doi: 10.1016/0003-2697(72)90293-x. [DOI] [PubMed] [Google Scholar]
  8. Eisenberg A. D., Marquis R. E. Uptake of fluoride by cells of Streptococcus mutans in dense suspensions. J Dent Res. 1980 Jul;59(7):1187–1191. doi: 10.1177/00220345800590072801. [DOI] [PubMed] [Google Scholar]
  9. Germaine G. R., Tellefson L. M. Effect of human saliva on glucose uptake by Streptococcus mutans and other oral microorganisms. Infect Immun. 1981 Feb;31(2):598–607. doi: 10.1128/iai.31.2.598-607.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Germaine G. R., Tellefson L. M. Simple filter paper procedure for estimation of glucose uptake via group translocation by whole-cell suspensions of bacteria. Appl Environ Microbiol. 1981 Mar;41(3):837–839. doi: 10.1128/aem.41.3.837-839.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gracy R. W., Noltmann E. A. Studies on phosphomannose isomerase. II. Characterization as a zinc metalloenzyme. J Biol Chem. 1968 Aug 10;243(15):4109–4116. [PubMed] [Google Scholar]
  12. Hamilton I. R. Effects of fluoride on enzymatic regulation of bacterial carbohydrate metabolism. Caries Res. 1977;11 (Suppl 1):262–291. doi: 10.1159/000260304. [DOI] [PubMed] [Google Scholar]
  13. Hamilton I. R., Ellwood D. C. Effects of fluoride on carbohydrate metabolism by washed cells of Streptococcus mutans grown at various pH values in a chemostat. Infect Immun. 1978 Feb;19(2):434–442. doi: 10.1128/iai.19.2.434-442.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jenkins G. N., Edgar W. M. Distribution and forms of F in saliva and plaque. Caries Res. 1977;11 (Suppl 1):226–242. doi: 10.1159/000260302. [DOI] [PubMed] [Google Scholar]
  15. Kashket E. R., Barker S. L. Effects of potassium ions on the electrical and pH gradients across the membrane of Streptococcus lactis cells. J Bacteriol. 1977 Jun;130(3):1017–1023. doi: 10.1128/jb.130.3.1017-1023.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kashket E. R., Blanchard A. G., Metzger W. C. Proton motive force during growth of Streptococcus lactis cells. J Bacteriol. 1980 Jul;143(1):128–134. doi: 10.1128/jb.143.1.128-134.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kashket S., Bunick F. J. Binding of fluoride in oral streptococci. Arch Oral Biol. 1978;23(11):993–996. doi: 10.1016/0003-9969(78)90255-8. [DOI] [PubMed] [Google Scholar]
  18. Kilian M., Thylstrup A., Fejerskov O. Predominant plaque flora of Tanzanian children exposed to high and low water fluoride concentrations. Caries Res. 1979;13(6):330–343. doi: 10.1159/000260423. [DOI] [PubMed] [Google Scholar]
  19. Mickelson M. N. Glucose transport in Streptococcus agalactiae and its inhibition by lactoperoxidase-thiocyanate-hydrogen peroxide. J Bacteriol. 1977 Nov;132(2):541–548. doi: 10.1128/jb.132.2.541-548.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Odeberg H., Olsson I. Mechanisms for the microbicidal activity of cationic proteins of human granulocytes. Infect Immun. 1976 Dec;14(6):1269–1275. doi: 10.1128/iai.14.6.1269-1275.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Peters E. H., Azen E. A. Isolation and partial characterization of human parotid basic proteins. Biochem Genet. 1977 Oct;15(9-10):925–946. doi: 10.1007/BF00483989. [DOI] [PubMed] [Google Scholar]
  22. Whitford G. M., Schuster G. S., Pashley D. H., Venkateswarlu P. Fluoride uptake by Streptococcus mutans 6715. Infect Immun. 1977 Dec;18(3):680–687. doi: 10.1128/iai.18.3.680-687.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Yotis W. W., Mante S., Brennan P. C., Kirchner F. R., Glendenin L. E. Binding of fluorine-18 by the oral bacterium, Streptococcus mutans. Arch Oral Biol. 1979;24(10-11):853–860. doi: 10.1016/0003-9969(79)90050-5. [DOI] [PubMed] [Google Scholar]
  24. Zeya H. I., Spitznagel J. K. Cationic proteins of polymorphonuclear leukocyte lysosomes. II. Composition, properties, and mechanism of antibacterial action. J Bacteriol. 1966 Feb;91(2):755–762. doi: 10.1128/jb.91.2.755-762.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. van Houte J., Aasenden R., Peebles T. C. Oral colonization of Streptococcus mutans in human subjects with low caries experience given fluoride supplements from birth. Arch Oral Biol. 1978;23(5):361–366. doi: 10.1016/0003-9969(78)90093-6. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES