Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1982 Jan;35(1):38–45. doi: 10.1128/iai.35.1.38-45.1982

Mode of action of staphylococcal leukocidin: effects of the S and F components on the activities of membrane-associated enzymes of rabbit polymorphonuclear leukocytes.

M Noda, I Kato, T Hirayama, F Matsuda
PMCID: PMC350992  PMID: 6274802

Abstract

The cytotoxic action of the S component of leukocidin from Staphylococcus aureus on rabbit polymorphonuclear leukocytes was supported by the following observations, (i) Leukocytes displayed a large chemotactic response to the S component (10(-10) M) as well as to the chemotactic factor N-formylmethionylleucylphenylalanine (10(-11) M). (ii) The S component stimulated high levels of phospholipase A2 activity in the cell membranes, with concomitant synthesis and release of prostaglandins. (iii) Uptake of 45Ca into leukocytes exposed to the S component was about double the rate of uptake into untreated cells. The increased 45Ca uptake into the cells was not inhibited by trifluoperazine and ruthenium red. (iv) Indomethacin and alloxazine, which had no effects on the binding of the S component to the cells, attenuated markedly the stimulation of phospholipase A2 activity, the syntheses of prostaglandins, and the increased uptake of 45Ca caused by the S component. The F component of leukocidin, bound to rabbit leukocytes with the aid of the S component, rapidly induced complete release of 86Rb from preloaded leukocytes. This release resulted from stimulation of ouabain-insensitive (Na+ + K+)-adenosine triphosphatase activity and inhibition of cyclic AMP-dependent protein kinase.

Full text

PDF
38

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cantley L. C., Jr, Josephson L., Warner R., Yanagisawa M., Lechene C., Guidotti G. Vanadate is a potent (Na,K)-ATPase inhibitor found in ATP derived from muscle. J Biol Chem. 1977 Nov 10;252(21):7421–7423. [PubMed] [Google Scholar]
  2. Elsbach P., Weiss J., Franson R. C., Beckerdite-Quagliata S., Schneider A., Harris L. Separation and purification of a potent bactericidal/permeability-increasing protein and a closely associated phospholipase A2 from rabbit polymorphonuclear leukocytes. Observations on their relationship. J Biol Chem. 1979 Nov 10;254(21):11000–11009. [PubMed] [Google Scholar]
  3. Flower R. J., Vane J. R. Inhibition of prostaglandin biosynthesis. Biochem Pharmacol. 1974 May 15;23(10):1439–1450. doi: 10.1016/0006-2952(74)90381-5. [DOI] [PubMed] [Google Scholar]
  4. GREENWOOD F. C., HUNTER W. M., GLOVER J. S. THE PREPARATION OF I-131-LABELLED HUMAN GROWTH HORMONE OF HIGH SPECIFIC RADIOACTIVITY. Biochem J. 1963 Oct;89:114–123. doi: 10.1042/bj0890114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gilman A. G. A protein binding assay for adenosine 3':5'-cyclic monophosphate. Proc Natl Acad Sci U S A. 1970 Sep;67(1):305–312. doi: 10.1073/pnas.67.1.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Godfraind-De Becker A., Godfraind T. Calcium transport system: a comparative study in different cells. Int Rev Cytol. 1980;67:141–170. doi: 10.1016/s0074-7696(08)62428-6. [DOI] [PubMed] [Google Scholar]
  7. Hirata F., Corcoran B. A., Venkatasubramanian K., Schiffmann E., Axelrod J. Chemoattractants stimulate degradation of methylated phospholipids and release of arachidonic acid in rabbit leukocytes. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2640–2643. doi: 10.1073/pnas.76.6.2640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hirata F., Schiffmann E., Venkatasubramanian K., Salomon D., Axelrod J. A phospholipase A2 inhibitory protein in rabbit neutrophils induced by glucocorticoids. Proc Natl Acad Sci U S A. 1980 May;77(5):2533–2536. doi: 10.1073/pnas.77.5.2533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kaplan L., Weiss J., Elsbach P. Low concentrations of indomethacin inhibit phospholipase A2 of rabbit polymorphonuclear leukocytes. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2955–2958. doi: 10.1073/pnas.75.6.2955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kato I. Inhibitory effect of a lethal toxic fragment of staphylococcal alpha-toxin on cyclic AMP-dependent protein kinase activity. Biochim Biophys Acta. 1979 Oct 11;570(2):388–396. doi: 10.1016/0005-2744(79)90158-x. [DOI] [PubMed] [Google Scholar]
  11. Krebs E. G., Beavo J. A. Phosphorylation-dephosphorylation of enzymes. Annu Rev Biochem. 1979;48:923–959. doi: 10.1146/annurev.bi.48.070179.004423. [DOI] [PubMed] [Google Scholar]
  12. Kuehl F. A., Jr, Egan R. W. Prostaglandins, arachidonic acid, and inflammation. Science. 1980 Nov 28;210(4473):978–984. doi: 10.1126/science.6254151. [DOI] [PubMed] [Google Scholar]
  13. Kuo J. F., Greengard P. Cyclic nucleotide-dependent protein kinases. 8. An assay method for the measurement of adenosine 3',5'-monophosphate in various tissues and a study of agents influencing its level in adipose cells. J Biol Chem. 1970 Aug 25;245(16):4067–4073. [PubMed] [Google Scholar]
  14. LOVE W. D., BURCH G. E. A comparison of potassium 42, rubidium 86, and cesium 134 as tracers of potassium in the study of cation metabolism of human erythrocytes in vitro. J Lab Clin Med. 1953 Mar;41(3):351–362. [PubMed] [Google Scholar]
  15. Matsui H., Schwartz A. Mechanism of cardiac glycoside inhibition of the (Na+-K+)-dependent ATPase from cardiac tissue. Biochim Biophys Acta. 1968 Mar 25;151(3):655–663. doi: 10.1016/0005-2744(68)90013-2. [DOI] [PubMed] [Google Scholar]
  16. Miyamoto E., Kuo J. F., Greengard P. Cyclic nucleotide-dependent protein kinases. 3. Purification and properties of adenosine 3',5'-monophosphate-dependent protein kinase from bovine brain. J Biol Chem. 1969 Dec 10;244(23):6395–6402. [PubMed] [Google Scholar]
  17. Nelson R. D., Quie P. G., Simmons R. L. Chemotaxis under agarose: a new and simple method for measuring chemotaxis and spontaneous migration of human polymorphonuclear leukocytes and monocytes. J Immunol. 1975 Dec;115(6):1650–1656. [PubMed] [Google Scholar]
  18. Noda M., Hirayama T., Kato I., Matsuda F. Crystallization and properties of staphylococcal leukocidin. Biochim Biophys Acta. 1980 Nov 17;633(1):33–44. doi: 10.1016/0304-4165(80)90035-5. [DOI] [PubMed] [Google Scholar]
  19. Noda M., Kato I., Hirayama T., Matsuda F. Fixation and inactivation of staphylococcal leukocidin by phosphatidylcholine and ganglioside GM1 in rabbit polymorphonuclear leukocytes. Infect Immun. 1980 Aug;29(2):678–684. doi: 10.1128/iai.29.2.678-684.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Noda M., Kato I., Matsuda F., Hirayama T. Mode of action of staphylococcal leukocidin: relationship between binding of 125I-labeled S and F components of leukocidin to rabbit polymorphonuclear leukocytes and leukocidin activity. Infect Immun. 1981 Nov;34(2):362–367. doi: 10.1128/iai.34.2.362-367.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Op den Kamp J. A. Lipid asymmetry in membranes. Annu Rev Biochem. 1979;48:47–71. doi: 10.1146/annurev.bi.48.070179.000403. [DOI] [PubMed] [Google Scholar]
  22. Pretlow T. G., 2nd, Luberoff D. E. A new method for separating lymphocytes and granulocytes from human peripheral blood using programmed gradient sedimentation in an isokinetic gradient. Immunology. 1973 Jan;24(1):85–92. [PMC free article] [PubMed] [Google Scholar]
  23. ROBERTSON A. F., LANDS W. E. Positional specificites in phospholipid hydrolyses. Biochemistry. 1962 Sep;1:804–810. doi: 10.1021/bi00911a012. [DOI] [PubMed] [Google Scholar]
  24. Samuelsson B., Goldyne M., Granström E., Hamberg M., Hammarström S., Malmsten C. Prostaglandins and thromboxanes. Annu Rev Biochem. 1978;47:997–1029. doi: 10.1146/annurev.bi.47.070178.005025. [DOI] [PubMed] [Google Scholar]
  25. Weller M. The effect of cyclic nucleotides and protein phosphorylation on the permeability of human erythrocyte ghosts to certain cations. Mol Cell Biochem. 1978 Jun 28;20(2):95–102. doi: 10.1007/BF00241387. [DOI] [PubMed] [Google Scholar]
  26. Woodin A. M., Wieneke A. A. Action of phospholipids and leucocidin on the p-nitrophenyl phosphatase of the leucocyte membrane. Biochim Biophys Acta. 1971 Jun 1;233(3):702–715. doi: 10.1016/0005-2736(71)90169-6. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES