Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1982 Mar;35(3):818–825. doi: 10.1128/iai.35.3.818-825.1982

Activation of Monocyte and Granulocyte Antibody-Dependent Cytotoxicity by Phorbol Myristate Acetate

David K Klassen 1, Paul R Conkling 1, Arthur L Sagone Jr 1
PMCID: PMC351121  PMID: 7068217

Abstract

We have characterized the effects of phorbol myristate acetate (PMA) on human monocyte and neutrophil oxidative metabolism and antibody-dependent cytotoxicity toward anti-D sensitized human erythrocytes (RBC) and a human lymphoblastoid cell line (CEM). Hexose monophosphate shunt activity was measured by [1-14C]glucose oxidation and target lysis by 51Cr release. PMA produced a dose-dependent stimulation of hexose monophosphate shunt activity. Neutrophils responded with higher hexose monophosphate shunt activity and at a lower PMA concentration than did monocytes. PMA increased monocyte lysis of antibody-sensitized RBC by two-thirds, but did not affect lysis of CEM targets. Neutrophils were unable to lyse either antibody-sensitized or nonsensitized RBC without the addition of PMA. When PMA was added, lysis of both targets increased markedly. Neutrophils without PMA were able to lyse a small number of both antibody-sensitized and nonsensitized CEM targets. PMA also increased neutrophil lysis of these targets. Target lysis by neutrophils from a patient with chronic granulomatous disease, cells unable to produce reactive oxygen species, was not increased by PMA. Chronic granulomatous disease monocytes, however, responded to PMA by more than doubling lysis of antibody-sensitized RBC. Hypoxia inhibited PMA augmentation of antibody-sensitized RBC lysis by neutrophils, but not by monocytes. Generation of reactive oxygen species by the xanthine-xanthine oxidase system inhibited CEM growth, but did not cause lysis, indicating that in some cases oxidative injury may be nonlytic. We suggest that PMA augments neutrophil cytotoxicity to tumor and RBC targets by stimulating reactive oxygen species-mediated lysis, but in monocytes augmentation of lysis is due to activation of a nonoxidative mechanism of lysis.

Full text

PDF
818

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babior B. M. Oxygen-dependent microbial killing by phagocytes (first of two parts). N Engl J Med. 1978 Mar 23;298(12):659–668. doi: 10.1056/NEJM197803232981205. [DOI] [PubMed] [Google Scholar]
  2. Borregaard N., Kragballe K. Role of oxygen in antibody-dependent cytotoxicity mediated by monocytes and neutrophils. J Clin Invest. 1980 Oct;66(4):676–683. doi: 10.1172/JCI109904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Böyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl. 1968;97:77–89. [PubMed] [Google Scholar]
  4. Capsoni F., Meroni P. L., Ciboddo G. F., Colombo G. Cytotoxic mechanism in white blood cells. N Engl J Med. 1979 Jan 4;300(1):44–44. doi: 10.1056/NEJM197901043000115. [DOI] [PubMed] [Google Scholar]
  5. Clark R. A., Klebanoff S. J. Studies on the mechanism of antibody-dependent polymorphonuclear leukocyte-mediated cytotoxicity. J Immunol. 1977 Oct;119(4):1413–1418. [PubMed] [Google Scholar]
  6. Driedger P. E., Blumberg P. M. Non-phorbol mouse skin tumor promoters do not mimic phorbol myristate acetate in its effects on chick embryo fibroblasts. Int J Cancer. 1978 Jul 15;22(1):63–69. doi: 10.1002/ijc.2910220113. [DOI] [PubMed] [Google Scholar]
  7. Estensen R. D., White J. G., Holmes B. Specific degranulation of human polymorphonuclear leukocytes. Nature. 1974 Mar 22;248(446):347–348. doi: 10.1038/248347a0. [DOI] [PubMed] [Google Scholar]
  8. Fleer A., Roos D., von dem Borne A. E., Engelfriet C. P. Cytotoxic activity of human monocytes towards sensitized red cells is not dependent on the generation of reactive oxygen species. Blood. 1979 Aug;54(2):407–411. [PubMed] [Google Scholar]
  9. Fleer A., van Schaik M. L., von dem Borne A. E., Engelfriet C. P. Destruction of sensitized erythrocytes by human monocytes in vitro: effects of cytochalasin B, hydrocortisone and colchicine. Scand J Immunol. 1978;8(6):515–524. doi: 10.1111/j.1365-3083.1978.tb00551.x. [DOI] [PubMed] [Google Scholar]
  10. Hafeman D. G., Lucas Z. J. Polymorphonuclear leukocyte-mediated, antibody-dependent, cellular cytotoxicity against tumor cells: dependence on oxygen and the respiratory burst. J Immunol. 1979 Jul;123(1):55–62. [PubMed] [Google Scholar]
  11. Haskill J. S., Fett J. W. Possible evidence for antibody-dependent macrophage-mediated cytotoxicity directed against murine adenocarcinoma cells in vivo. J Immunol. 1976 Nov;117(5 PT2):1992–1998. [PubMed] [Google Scholar]
  12. Hodgson E. K., Fridovich I. The mechanism of the activity-dependent luminescence of xanthine oxidase. Arch Biochem Biophys. 1976 Jan;172(1):202–205. doi: 10.1016/0003-9861(76)90067-9. [DOI] [PubMed] [Google Scholar]
  13. Horwitz D. A., Kight N., Temple A., Allison A. C. Spontaneous and induced cytotoxic properties of human adherent mononuclear cells: killing of non-sensitized and antibody-coated non-erythroid cells. Immunology. 1979 Feb;36(2):221–228. [PMC free article] [PubMed] [Google Scholar]
  14. Johnson R. J., Pasternack G. R., Shin H. S. Antibody-mediated suppression of tumor growth. II. Macrophage and platelet cooperation with murine IgG1 isolated from alloantiserum. J Immunol. 1977 Feb;118(2):494–497. [PubMed] [Google Scholar]
  15. Johnston R. B., Jr, Lehmeyer J. E., Guthrie L. A. Generation of superoxide anion and chemiluminescence by human monocytes during phagocytosis and on contact with surface-bound immunoglobulin G. J Exp Med. 1976 Jun 1;143(6):1551–1556. doi: 10.1084/jem.143.6.1551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Katz P., Simone C. B., Henkart P. A., Fauci A. S. Mechanisms of antibody-dependent cellular cytotoxicity: the use of effector cells from chronic granulomatous disease patients as investigative probes. J Clin Invest. 1980 Jan;65(1):55–63. doi: 10.1172/JCI109660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Klassen D. K., Sagone A. L., Jr Evidence for both oxygen and non-oxygen dependent mechanisms of antibody sensitized target cell lysis by human monocytes. Blood. 1980 Dec;56(6):985–992. [PubMed] [Google Scholar]
  18. Koller C. A., King G. W., Hurtubise P. E., Sagone A. L., LoBuglio A. F. Characterization of glass adherent human mononuclear cells. J Immunol. 1973 Nov;111(5):1610–1612. [PubMed] [Google Scholar]
  19. Koufos A., Sagone A. L. Effects of oxidant stress on the hexose monophosphate shunt pathway of platelets. Blood. 1980 May;55(5):835–840. [PubMed] [Google Scholar]
  20. Krishan A., Frei E., 3rd Effect of adriamycin on the cell cycle traverse and kinetics of cultured human lymphoblasts. Cancer Res. 1976 Jan;36(1):143–150. [PubMed] [Google Scholar]
  21. Kurlander R. J., Rosse W. F., Logue G. L. Quantitative influence of antibody and complement coating of red cells on monocyte-mediated cell lysis. J Clin Invest. 1978 May;61(5):1309–1319. doi: 10.1172/JCI109048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kurlander R. J., Rosse W. F. Monocyte-mediated destruction in the presence of serum of red cells coated with antibody. Blood. 1979 Nov;54(5):1131–1139. [PubMed] [Google Scholar]
  23. Mendelson D. S., Metz E. N., Sagone A. L., Jr Effect of phagocytosis on the reduced soluble sulfhydryl content of human granulocytes. Blood. 1977 Dec;50(6):1023–1030. [PubMed] [Google Scholar]
  24. Nathan C. F., Silverstein S. C., Brukner L. H., Cohn Z. A. Extracellular cytolysis by activated macrophages and granulocytes. II. Hydrogen peroxide as a mediator of cytotoxicity. J Exp Med. 1979 Jan 1;149(1):100–113. doi: 10.1084/jem.149.1.100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Newburger P. E., Chovaniec M. E., Cohen H. J. Activity and activation of the granulocyte superoxide-generating system. Blood. 1980 Jan;55(1):85–92. [PubMed] [Google Scholar]
  26. Norris D. A., Morris R. M., Sanderson R. J., Kohler P. F. Isolation of functional subsets of human peripheral blood monocytes. J Immunol. 1979 Jul;123(1):166–172. [PubMed] [Google Scholar]
  27. Papermaster-Bender G., Whitcomb M. E., Sagone A. L., Jr Characterization of the metabolic responses of the human pulmonary alveolar macrophage. J Reticuloendothel Soc. 1980 Aug;28(2):129–139. [PubMed] [Google Scholar]
  28. Randazzo B., Hirschberg T., Hirschberg H. Cytotoxic effects of activated human monocytes and lymphocytes to anti-D-treated human erythrocytes in vitro. Scand J Immunol. 1979;9(4):351–358. doi: 10.1111/j.1365-3083.1979.tb03173.x. [DOI] [PubMed] [Google Scholar]
  29. Reiss M., Roos D. Differences in oxygen metabolism of phagocytosing monocytes and neutrophils. J Clin Invest. 1978 Feb;61(2):480–488. doi: 10.1172/JCI108959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Repine J. E., Eaton J. W., Anders M. W., Hoidal J. R., Fox R. B. Generation of hydroxyl radical by enzymes, chemicals, and human phagocytes in vitro. Detection with the anti-inflammatory agent, dimethyl sulfoxide. J Clin Invest. 1979 Dec;64(6):1642–1651. doi: 10.1172/JCI109626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sagone A. L., Jr, Burton G. M. The effect of BCNU and adriamycin on normal and G6PD deficient erythrocytes. Am J Hematol. 1979;7(2):97–106. doi: 10.1002/ajh.2830070202. [DOI] [PubMed] [Google Scholar]
  32. Sagone A. L., Jr, Kamps S., Campbell R. The effect of oxidant injury on the lymphoblastic transformation of human lymphocytes. Photochem Photobiol. 1978 Oct-Nov;28(4-5):909–915. doi: 10.1111/j.1751-1097.1978.tb07039.x. [DOI] [PubMed] [Google Scholar]
  33. Sagone A. L., Jr, King G. W., Metz E. N. A comparison of the metabolic response to phagocytosis in human granulocytes and monocytes. J Clin Invest. 1976 May;57(5):1352–1358. doi: 10.1172/JCI108403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sagone A. L., Jr, LoBuglio A. F., Balcerzak S. P. Alterations in hexose monophosphate shunt during lymphoblastic transformation. Cell Immunol. 1974 Dec;14(3):443–452. doi: 10.1016/0008-8749(74)90195-6. [DOI] [PubMed] [Google Scholar]
  35. Shaw G. M., Levy P. C., LoBuglio A. F. Human monocyte antibody-dependent cell-mediated cytotoxicity to tumor cells. J Clin Invest. 1978 Dec;62(6):1172–1180. doi: 10.1172/JCI109236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Shin H. S., Kaliss N., Borenstein D., Gately M. K. Antibody-mediated suppression of grafted lymphoma cells. II. Participation of macrophages. J Exp Med. 1972 Aug 1;136(2):375–380. doi: 10.1084/jem.136.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Slivka A., LoBuglio A. F., Weiss S. J. A potential role for hypochlorous acid in granulocyte-mediated tumor cell cytotoxicity. Blood. 1980 Feb;55(2):347–350. [PubMed] [Google Scholar]
  38. Staub N. C. The emerging role of the microcirculation in clinical medicine. J Lab Clin Med. 1981 Sep;98(3):311–322. [PubMed] [Google Scholar]
  39. WOOD H. G., KATZ J., LANDAU B. R. ESTIMATION OF PATHWAYS OF CARBOHYDRATE METABOLISM. Biochem Z. 1963;338:809–847. [PubMed] [Google Scholar]
  40. Weiss S. J., LoBuglio A. F., Kessler H. B. Oxidative mechanisms of monocyte-mediated cytotoxicity. Proc Natl Acad Sci U S A. 1980 Jan;77(1):584–587. doi: 10.1073/pnas.77.1.584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Weiss S. J., Young J., LoBuglio A. F., Slivka A., Nimeh N. F. Role of hydrogen peroxide in neutrophil-mediated destruction of cultured endothelial cells. J Clin Invest. 1981 Sep;68(3):714–721. doi: 10.1172/JCI110307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Yam L. T., Li C. Y., Crosby W. H. Cytochemical identification of monocytes and granulocytes. Am J Clin Pathol. 1971 Mar;55(3):283–290. doi: 10.1093/ajcp/55.3.283. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES