Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1982 May;36(2):691–695. doi: 10.1128/iai.36.2.691-695.1982

Virus-infected colostral cell cytokine stimulation of human leukocyte natural killer cytotoxicity.

S Kohl, L K Pickering, L S Loo
PMCID: PMC351285  PMID: 6282758

Abstract

Natural killer cytotoxicity is an important antiviral defense mechanism. Human peripheral blood mononuclear cells cultured with herpes simplex virus (HSV)-infected cells produced a cytokine. This substance stimulated adult natural killer cytotoxicity from 53.0 +/- 10.5% to 79.8% (P less than 0.01) against HSV-infected target cells. These data resulted in a calculated cytokine-dependent cellular cytotoxicity (CDCC) value of 65.8%. Cytokine production was not stimulated by uninfected cells and was independent of the presence or absence of antibodies to HSV in sera of donors and mononuclear cells. Cells from human colostrum also produced an HSV-stimulated cytokine which mediated CDCC by using both adult (19.8 +/- 3.9%) and neonatal (18.6 +/- 3.4%) mononuclear effectors cells. Colostral cell cytokine production was also independent of donor HSV serology. Not all colostral cultures produced the cytokine, and in general colostrum-stimulated CDCC was lower than peripheral blood leukocyte-stimulated CDCC. Colostral cell cytokine stimulation of neonatal natural killer cytotoxicity may account in part for the increased nonspecific resistance of breast-fed infants to viral infection.

Full text

PDF
691

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ching C., Lopez C. Natural killing of herpes simplex virus type 1-infected target cells: normal human responses and influence of antiviral antibody. Infect Immun. 1979 Oct;26(1):49–56. doi: 10.1128/iai.26.1.49-56.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cunningham A. S. Morbidity in breast-fed and artificially fed infants. J Pediatr. 1977 May;90(5):726–729. doi: 10.1016/s0022-3476(77)81236-5. [DOI] [PubMed] [Google Scholar]
  3. Djeu J. Y., Heinbaugh J. A., Holden H. T., Herberman R. B. Role of macrophages in the augementation of mouse natural killer cell activity by poly I:C and interferon. J Immunol. 1979 Jan;122(1):182–188. [PubMed] [Google Scholar]
  4. Downham M. A., Scott R., Sims D. G., Webb J. K., Gardner P. S. Breast-feeding protects against respiratory syncytial virus infections. Br Med J. 1976 Jul 31;2(6030):274–276. doi: 10.1136/bmj.2.6030.274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Emödi G., Just M. Interferon production by lymphocytes in human milk. Scand J Immunol. 1974;3(2):157–160. doi: 10.1111/j.1365-3083.1974.tb01243.x. [DOI] [PubMed] [Google Scholar]
  6. Greenberg S. B., Six H. R., Drake S., Couch R. B. Cell cytotoxicity due to specific influenza antibody production in vitro after recent influenza antigen stimulation. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4622–4626. doi: 10.1073/pnas.76.9.4622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Haahr S., Rasmussen L., Merigan T. C. Lymphocyte transformation and interferon production in human mononuclear cell microcultures for assay of cellular immunity to herpes simplex virus. Infect Immun. 1976 Jul;14(1):47–54. doi: 10.1128/iai.14.1.47-54.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Henney C. S., Kuribayashi K., Kern D. E., Gillis S. Interleukin-2 augments natural killer cell activity. Nature. 1981 May 28;291(5813):335–338. doi: 10.1038/291335a0. [DOI] [PubMed] [Google Scholar]
  9. Keller M. A., Kidd R. M., Bryson Y. J., Turner J. L., Carter J. Lymphokine production by human milk lymphocytes. Infect Immun. 1981 May;32(2):632–636. doi: 10.1128/iai.32.2.632-636.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kohl S., Frazier J. J., Greenberg S. B., Pickering L. K., Loo L. S. Interferon induction of natural killer cytotoxicity in human neonates. J Pediatr. 1981 Mar;98(3):379–384. doi: 10.1016/s0022-3476(81)80699-3. [DOI] [PubMed] [Google Scholar]
  11. Kohl S., Lawman M. J., Rouse B. T., Cahall D. L. Effect of herpes simplex virus infection on murine antibody-dependent cellular cytotoxicity and natural killer cytotoxicity. Infect Immun. 1981 Feb;31(2):704–711. doi: 10.1128/iai.31.2.704-711.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kohl S., Malloy M. M., Pickering L. K., Morriss F. H., Adcock E. W., Walters D. L. Human colostral cytotoxicity: I. Antibody-dependent cellular cytotoxicity against Herpes simplex viral-infected cells mediated by colostral cells. J Clin Lab Immunol. 1978 Nov;1(3):221–224. [PubMed] [Google Scholar]
  13. Kohl S., Pickering L. K., Cleary T. G., Steinmetz K. D., Loo L. S. Human colostral cytotoxicity. II. Relative defects in colostral leukocyte cytotoxicity and inhibition of peripheral blood leukocyte cytotoxicity by colostrum. J Infect Dis. 1980 Dec;142(6):884–891. doi: 10.1093/infdis/142.6.884. [DOI] [PubMed] [Google Scholar]
  14. Kohl S., Shaban S. S., Starr S. E., Wood P. A., Nahmias A. J. Human neonatal and maternal monocyte-macrophage and lymphocyte-mediated antibody-dependent cytotoxicity to cells infected with herpes simplex. J Pediatr. 1978 Aug;93(2):206–210. doi: 10.1016/s0022-3476(78)80497-1. [DOI] [PubMed] [Google Scholar]
  15. Kohl S., Starr S. E., oleske J. M., Shore S. L., Ashman R. B., Nahmias A. J. Human monocyte-macrophage-mediated antibody-dependent cytotoxicity to herpes simplex virus-infected cells. J Immunol. 1977 Mar;118(3):729–735. [PubMed] [Google Scholar]
  16. Koren H. S., Anderson S. J., Fischer D. G., Copeland C. S., Jensen P. J. Regulation of human natural killing. I. The role of monocytes, interferon, and prostaglandins. J Immunol. 1981 Nov;127(5):2007–2013. [PubMed] [Google Scholar]
  17. Larsen S. A., Jr, Homer D. R. Relation of breast versus bottle feeding to hospitalization for gastroenteritis in a middle-class U.S. population. J Pediatr. 1978 Mar;92(3):417–418. doi: 10.1016/s0022-3476(78)80430-2. [DOI] [PubMed] [Google Scholar]
  18. Lawton J. W., Shortridge K. F., Wong R. L., Ng M. H. Interferon synthesis by human colostral leucocytes. Arch Dis Child. 1979 Feb;54(2):127–130. doi: 10.1136/adc.54.2.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Oleske J. M., Ashman R. B., Kohl S., Shore S. L., Starr S. E., Wood P., Nahmias A. J. Human polymorphonuclear leucocytes as mediators of antibody-dependent cellular cytotoxicity to herpes simplex virus-infected cells. Clin Exp Immunol. 1977 Mar;27(3):446–453. [PMC free article] [PubMed] [Google Scholar]
  20. Otnaess A. B., Orstavik I. The effect of human milk fractions on rotavirus in relation to the secretory IgA content. Acta Pathol Microbiol Scand C. 1980 Feb;88(1):15–21. doi: 10.1111/j.1699-0463.1980.tb00067.x. [DOI] [PubMed] [Google Scholar]
  21. Pickering L. K., Cleary T. G., Kohl S., Getz S. Polymorphonuclear leukocytes of human colostrum. I. Oxidative metabolism and kinetics of killing of radiolabeled Staphylococcus aureus. J Infect Dis. 1980 Nov;142(5):685–693. doi: 10.1093/infdis/142.5.685. [DOI] [PubMed] [Google Scholar]
  22. Pitt J., Barlow B., Heird W. C. Protection against experimental necrotizing enterocolitis by maternal milk. I. Role of milk leukocytes. Pediatr Res. 1977 Aug;11(8):906–909. doi: 10.1203/00006450-197708000-00011. [DOI] [PubMed] [Google Scholar]
  23. Pittard W. B., 3rd Breast milk immunology. A frontier in infant nutrition. Am J Dis Child. 1979 Jan;133(1):83–87. doi: 10.1001/archpedi.1979.02130010089019. [DOI] [PubMed] [Google Scholar]
  24. Pittard W. B., 3rd, Polmar S. H., Fanaroff A. A. The breastmilk macrophage: a potential vehicle for immunoglobulin transport. J Reticuloendothel Soc. 1977 Dec;22(6):597–603. [PubMed] [Google Scholar]
  25. Santoli D., Trinchieri G., Koprowski H. Cell-mediated cytotoxicity against virus-infected target cells in humans. II. Interferon induction and activation of natural killer cells. J Immunol. 1978 Aug;121(2):532–538. [PubMed] [Google Scholar]
  26. Totterdell B. M., Chrystie I. L., Banatvala J. E. Cord blood and breast-milk antibodies in neonatal rotavirus infection. Br Med J. 1980 Mar 22;280(6217):828–830. doi: 10.1136/bmj.280.6217.828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tracey D. E. The requirement for macrophages in the augmentation of natural killer cell activity by BCG. J Immunol. 1979 Aug;123(2):840–845. [PubMed] [Google Scholar]
  28. Welsh J. K., May J. T. Anti-infective properties of breast milk. J Pediatr. 1979 Jan;94(1):1–9. doi: 10.1016/s0022-3476(79)80340-6. [DOI] [PubMed] [Google Scholar]
  29. Welsh J. K., Skurrie I. J., May J. T. Use of Semliki forest virus to identify lipid-mediated antiviral activity and anti-alphavirus immunoglobulin A in human milk. Infect Immun. 1978 Feb;19(2):395–401. doi: 10.1128/iai.19.2.395-401.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. de Vries J. E., Mendelsohn J., Bont W. S. Requirement for monocytes in the spontaneous cytotoxic effects of human lymphocytes against non-lymphoid target cells. Nature. 1980 Feb 7;283(5747):574–576. doi: 10.1038/283574a0. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES