Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1981 Mar;31(3):1071–1077. doi: 10.1128/iai.31.3.1071-1077.1981

Distribution of glucose incorporated into macromolecular material by treponema pallidum.

J T Barbieri, F E Austin, C D Cox
PMCID: PMC351426  PMID: 7014454

Abstract

Treponema pallidum was observed to incorporate glucose carbons into lipids, ribonucleic acid, deoxyribonucleic acid, and protein. Only the glycerol portions of phosphatidylcholine and phosphatidylglycerol contained glucose-derived carbons. Incorporation of exogenous choline into phosphatidylcholine was detected. Glucose was incorporated into only the pentoses of nucleic acids. About 50% of the glucose incorporated into protein was present in only one amino acid, aspartate. Evidence suggests that aspartate synthesis could follow the conversion of phosphoenolpyruvate to oxalacetic acid by a guanosine 5'-diphosphate-dependent phosphoenolpyruvate carboxykinase.

Full text

PDF
1071

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alderete J. F., Baseman J. B. Surface-associated host proteins on virulent Treponema pallidum. Infect Immun. 1979 Dec;26(3):1048–1056. doi: 10.1128/iai.26.3.1048-1056.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allen S. L., Johnson R. C., Peterson D. Metabolism of Common Substrates by the Reiter Strain of Treponema pallidum. Infect Immun. 1971 Jun;3(6):727–734. doi: 10.1128/iai.3.6.727-734.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barbieri J. T., Cox C. D. Glucose incorporation by Treponema pallidum. Infect Immun. 1979 Apr;24(1):291–293. doi: 10.1128/iai.24.1.291-293.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barbieri J. T., Cox C. D. Pyruvate oxidation by Treponema pallidum. Infect Immun. 1979 Jul;25(1):157–163. doi: 10.1128/iai.25.1.157-163.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Baseman J. B., Hayes N. S. Anabolic potential of virulent Treponema pallidum. Infect Immun. 1977 Dec;18(3):857–859. doi: 10.1128/iai.18.3.857-859.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Baseman J. B., Hayes N. S. Protein synthesis by Treponema pallidum extracted from infected rabbit tissue. Infect Immun. 1974 Dec;10(6):1350–1355. doi: 10.1128/iai.10.6.1350-1355.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Baseman J. B., Nichols J. C., Hayes N. C. Virulent Treponema pallidum: aerobe or anaerobe. Infect Immun. 1976 Mar;13(3):704–711. doi: 10.1128/iai.13.3.704-711.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Baseman J. B., Nichols J. C., Mogerley S. Capacity of virulent Treponema pallidum (Nichols) for deoxyribonucleic acid synthesis. Infect Immun. 1979 Feb;23(2):392–397. doi: 10.1128/iai.23.2.392-397.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cannata J. J. Phosphoenolpyruvate carboxykinase from bakers' yeast. Isolation of the enzyme and study of its physical properties. J Biol Chem. 1970 Feb 25;245(4):792–798. [PubMed] [Google Scholar]
  10. Chang H. C., Lane M. D. The enzymatic carboxylation of phosphoenolpyruvate. II. Purification and properties of liver mitochondrial phosphoenolpyruvate carboxykinase. J Biol Chem. 1966 May 25;241(10):2413–2420. [PubMed] [Google Scholar]
  11. Hammarstrand K., Juntunen J. M., Hennes A. R. A method of collection of gas-liquid chromatographic effluent with cigarette filter tips. Anal Biochem. 1969 Jan;27(1):172–174. doi: 10.1016/0003-2697(69)90228-0. [DOI] [PubMed] [Google Scholar]
  12. Hassan H. M., Fridovich I. Regulation of the synthesis of catalase and peroxidase in Escherichia coli. J Biol Chem. 1978 Sep 25;253(18):6445–6420. [PubMed] [Google Scholar]
  13. Johnson R. C., Eggebraten L. M. Fatty Acid Requirements of the Kazan 5 and Reiter Strains of Treponema pallidum. Infect Immun. 1971 Jun;3(6):723–726. doi: 10.1128/iai.3.6.723-726.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kates M. Bacterial lipids. Adv Lipid Res. 1964;2:17–90. [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Livermore B. P., Bey R. F., Johnson R. C. Lipid metabolism of Borrelia hermsi. Infect Immun. 1978 Apr;20(1):215–220. doi: 10.1128/iai.20.1.215-220.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Livermore B. P., Johnson R. C. Lipids of the Spirochaetales: comparison of the lipids of several members of the genera Spirochaeta, Treponema, and Leptospira. J Bacteriol. 1974 Dec;120(3):1268–1273. doi: 10.1128/jb.120.3.1268-1273.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lysko P. G., Cox C. D. Respiration and oxidative phosphorylation in Treponema pallidum. Infect Immun. 1978 Aug;21(2):462–473. doi: 10.1128/iai.21.2.462-473.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lysko P. G., Cox C. D. Terminal electron transport in Treponema pallidum. Infect Immun. 1977 Jun;16(3):885–890. doi: 10.1128/iai.16.3.885-890.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. MacKenzie S. L., Tenaschuk D. Gas-liquid chromatography of N-heptafluorobutyryl isobutyl esters of amino acids. J Chromatogr. 1974 Oct 9;97(1):19–24. doi: 10.1016/s0021-9673(01)97579-x. [DOI] [PubMed] [Google Scholar]
  21. Matthews H. M., Yang T. K., Jenkin H. M. Unique lipid composition of Treponema pallidum (Nichols virulent strain). Infect Immun. 1979 Jun;24(3):713–719. doi: 10.1128/iai.24.3.713-719.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Neubort S., Marmur J. Synthesis of the unusual DNA of Bacillus subtilis bacteriophage SP-15. J Virol. 1973 Nov;12(5):1078–1084. doi: 10.1128/jvi.12.5.1078-1084.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nichols J. C., Baseman J. B. Carbon sources utilized by virulent Treponema pallidum. Infect Immun. 1975 Nov;12(5):1044–1050. doi: 10.1128/iai.12.5.1044-1050.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nichols J. C., Baseman J. B. Ribosomal ribonucleic acid synthesis by virulent Treponema pallidum. Infect Immun. 1978 Mar;19(3):854–860. doi: 10.1128/iai.19.3.854-860.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Norris S. J., Miller J. N., Sykes J. A. Long-term incorporation of tritiated adenine into deoxyribonucleic acid and ribonucleic acid by Treponema pallidum (Nichols strain). Infect Immun. 1980 Sep;29(3):1040–1049. doi: 10.1128/iai.29.3.1040-1049.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Raetz C. R. Enzymology, genetics, and regulation of membrane phospholipid synthesis in Escherichia coli. Microbiol Rev. 1978 Sep;42(3):614–659. doi: 10.1128/mr.42.3.614-659.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sandok P. L., Jenkin H. M. Radiolabeling of Treponema pallidum (Nichols virulent strain) in vitro with precursors for protein and RNA biosynthesis. Infect Immun. 1978 Oct;22(1):22–28. doi: 10.1128/iai.22.1.22-28.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schiller N. L., Cox C. D. Catabolism of glucose and fatty acids by virulent Treponema pallidum. Infect Immun. 1977 Apr;16(1):60–68. doi: 10.1128/iai.16.1.60-68.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. UTTER M. F., KEECH D. B. PYRUVATE CARBOXYLASE. I. NATURE OF THE REACTION. J Biol Chem. 1963 Aug;238:2603–2608. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES