Abstract
Human leukocyte interferon has been trapped in the aqueous interstices of multilamellar liposomes (phosphatidylcholine, dicetyl phosphate, and cholesterol [7:2:1]). Such liposomes trapped [3H]inulin (aqueous space marker) and interferon to the extent of 0.22 +/- 0.01 mg (n = 8) and 350 +/- 54 U (n = 4) per mumol of liquid, respectively, as judged by molecular sieve chromatography. Interferon trapped within liposomes was resistant to tryptic digestion under conditions which completely inactivated free interferon. Studies in which interferon was added to preformed liposomes excluded the possibility that interferon bound nonspecifically to the outer layer of the multilamellar liposomes. When interferon was added to the aqueous medium in which liposomes of various net surface charges were permitted to form, trapping of interferon varied directly with the interlamellar aqueous compartments of the liposomes. The demonstration that stable liposomes can entrap interferon suggests that these may constitute suitable vectors for the delivery of interferon to cells.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aguet M. High-affinity binding of 125I-labelled mouse interferon to a specific cell surface receptor. Nature. 1980 Apr 3;284(5755):459–461. doi: 10.1038/284459a0. [DOI] [PubMed] [Google Scholar]
- Dimitraidis G. J. Introduction of ribonucleic acids into cells by means of liposomes. Nucleic Acids Res. 1978 Apr;5(4):1381–1386. doi: 10.1093/nar/5.4.1381. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dimitriadis G. J. Translation of rabbit globin mRNA introduced by liposomes into mouse lymphocytes. Nature. 1978 Aug 31;274(5674):923–924. doi: 10.1038/274923a0. [DOI] [PubMed] [Google Scholar]
- Edy V. G., Billiau A., Joniau M., De Somer P. Stabilisation of mouse and human interferons by acid pH against inactivation due to shaking and guanidine hydrochloride. Proc Soc Exp Biol Med. 1974 May;146(1):249–253. doi: 10.3181/00379727-146-38080. [DOI] [PubMed] [Google Scholar]
- Finkelstein M. C., Maniscalco J., Weissmann G. Entrapment of soy bean trypsin inhibitor and alpha1-antitrypsin by multilamellar liposomes. Anal Biochem. 1978 Sep;89(2):400–407. doi: 10.1016/0003-2697(78)90368-8. [DOI] [PubMed] [Google Scholar]
- Finkelstein M. C., Weissmann G. Enzyme replacement via liposomes. Variations in lipid compositions determine liposomal integrity in biological fluids. Biochim Biophys Acta. 1979 Oct 4;587(2):202–216. doi: 10.1016/0304-4165(79)90354-4. [DOI] [PubMed] [Google Scholar]
- Finkelstein M., Weissmann G. The introduction of enzymes into cells by means of liposomes. J Lipid Res. 1978 Mar;19(3):289–303. [PubMed] [Google Scholar]
- Gregoriadis G. Targeting of drugs. Nature. 1977 Feb 3;265(5593):407–411. doi: 10.1038/265407a0. [DOI] [PubMed] [Google Scholar]
- Havell E. A., Vilcek J. Production of high-titered interferon in cultures of human diploid cells. Antimicrob Agents Chemother. 1972 Dec;2(6):476–484. doi: 10.1128/aac.2.6.476. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kirby C., Clarke J., Gregoriadis G. Cholesterol content of small unilamellar liposomes controls phospholipid loss to high density lipoproteins in the presence of serum. FEBS Lett. 1980 Mar 10;111(2):324–328. doi: 10.1016/0014-5793(80)80819-2. [DOI] [PubMed] [Google Scholar]
- Kirby C., Clarke J., Gregoriadis G. Effect of the cholesterol content of small unilamellar liposomes on their stability in vivo and in vitro. Biochem J. 1980 Feb 15;186(2):591–598. doi: 10.1042/bj1860591. [DOI] [PMC free article] [PubMed] [Google Scholar]
- La Bonnardière C. Association of mouse interferon with liposomes. FEBS Lett. 1977 May 15;77(2):191–196. doi: 10.1016/0014-5793(77)80232-9. [DOI] [PubMed] [Google Scholar]
- Liposomes and their uses in biology and medicine. Ann N Y Acad Sci. 1978;308:1–462. [PubMed] [Google Scholar]
- Ostro M. J., Giacomoni D., Lavelle D., Paxton W., Dray S. Evidence for translation of rabbit globin mRNA after liposome-mediated insertion into a human cell line. Nature. 1978 Aug 31;274(5674):921–923. doi: 10.1038/274921a0. [DOI] [PubMed] [Google Scholar]
- Revel M., Bash D., Ruddle F. H. Antibodies to a cell-surface component coded by human chromosome 21 inhibit action of interferon. Nature. 1976 Mar 11;260(5547):139–141. doi: 10.1038/260139a0. [DOI] [PubMed] [Google Scholar]
- Scherphof G., Roerdink F., Waite M., Parks J. Disintegration of phosphatidylcholine liposomes in plasma as a result of interaction with high-density lipoproteins. Biochim Biophys Acta. 1978 Aug 17;542(2):296–307. doi: 10.1016/0304-4165(78)90025-9. [DOI] [PubMed] [Google Scholar]
- Sessa G., Weissmann G. Incorporation of lysozyme into liposomes. A model for structure-linked latency. J Biol Chem. 1970 Jul 10;245(13):3295–3301. [PubMed] [Google Scholar]
- Weissmann G., Bloomgarden D., Kaplan R., Cohen C., Hoffstein S., Collins T., Gotlieb A., Nagle D. A general method for the introduction of enzymes, by means of immunoglobulin-coated liposomes, into lysosomes of deficient cells. Proc Natl Acad Sci U S A. 1975 Jan;72(1):88–92. doi: 10.1073/pnas.72.1.88. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weissmann G., Korchak H., Finkelstein M., Smolen J., Hoffstein S. Uptake of enzyme-laden liposomes by animal cells in vitro and in vivo. Ann N Y Acad Sci. 1978;308:235–249. doi: 10.1111/j.1749-6632.1978.tb22026.x. [DOI] [PubMed] [Google Scholar]
