Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1981 May;32(2):668–674. doi: 10.1128/iai.32.2.668-674.1981

Bactericidal activity of fractionated granule contents from human polymorphonuclear leukocytes: role of bacterial membrane lipid.

M C Modrzakowski, C M Paranavitana
PMCID: PMC351499  PMID: 7019076

Abstract

Granule contents from human polymorphonuclear leukocytes were prepared by extraction with 0.2 M acetate, pH 4. A buffer extract fraction (peak D) obtained by Sephadex G-100 column chromatography demonstrated distinct antimicrobial activity toward Acinetobacte sp. independent of added H2O2 or Cl-. The protein of this fraction had an apparent molecular weight of 9,000 and demonstrated time and dose dependence that was more active against stationary-growth cells than mid-log-phase cells. The bactericidal activity of the fraction was most active at 37 degrees C, with only slight activity demonstrated at 22 degrees C and no activity at 4 degrees C. Boiling the granule fraction for 30 min did not affect the antimicrobial activity. However, pronase or trypsin pretreatment of the peak D fraction reduced its antimicrobial activity. When the membrane lipid composition of Acinetobacter sp. was altered by growth on specific n-alkane carbon sources, the susceptibility to the granule fraction was also altered. Resistance to the activity of the granule fraction increased as the carbon chain length of the growth substrate increased. Liposomes formed from Acinetobacter sp. lipid extracts and containing glucose were made leaky with the addition of the granule fraction (boiled and not boiled), suggesting a membrane-disruptive activity of the granule protein against Acinetobacter sp. membranes.

Full text

PDF
668

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Eytan G., Matheson M. J., Racker E. Incorporation of biologically active proteins into liposomes. FEBS Lett. 1975 Sep 15;57(2):121–125. doi: 10.1016/0014-5793(75)80698-3. [DOI] [PubMed] [Google Scholar]
  2. Glew R. H., Moellering R. C., Jr, Kunz L. J. Infections with Acinetobacter calcoaceticus (Herellea vaginicola): clinical and laboratory studies. Medicine (Baltimore) 1977 Mar;56(2):79–97. doi: 10.1097/00005792-197703000-00001. [DOI] [PubMed] [Google Scholar]
  3. Huang C. Studies on phosphatidylcholine vesicles. Formation and physical characteristics. Biochemistry. 1969 Jan;8(1):344–352. doi: 10.1021/bi00829a048. [DOI] [PubMed] [Google Scholar]
  4. Juni E. Interspecies transformation of Acinetobacter: genetic evidence for a ubiquitous genus. J Bacteriol. 1972 Nov;112(2):917–931. doi: 10.1128/jb.112.2.917-931.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  6. Makula R. A., Finnerty W. R. Microbial assimilation of hydrocarbons: cellular distribution of fatty acids. J Bacteriol. 1972 Oct;112(1):398–407. doi: 10.1128/jb.112.1.398-407.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Makula R. A., Finnerty W. R. Microbial assimilation of hydrocarbons: identification of phospholipids. J Bacteriol. 1970 Aug;103(2):348–355. doi: 10.1128/jb.103.2.348-355.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Makula R. A., Lockwood P. J., Finnerty W. R. Comparative analysis of the lipids of Acinetobacter species grown on hexadecane. J Bacteriol. 1975 Jan;121(1):250–258. doi: 10.1128/jb.121.1.250-258.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Modrzakowski M. C., Cooney M. H., Martin L. E., Spitznagel J. K. Bactericidal activity of fractionated granule contents from human polymorphonuclear leukocytes. Infect Immun. 1979 Mar;23(3):587–591. doi: 10.1128/iai.23.3.587-591.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Modrzakowski M. C., Makula R. A., Finnerty W. R. Metabolism of the alkane analogue n-dioctyl ether by Acinetobacter species. J Bacteriol. 1977 Jul;131(1):92–97. doi: 10.1128/jb.131.1.92-97.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Modrzakowski M. C., Spitznagel J. K. Bactericidal activity of fractionated granule contents from human polymorphonuclear leukocytes: antagonism of granule cationic proteins by lipopolysaccharide. Infect Immun. 1979 Aug;25(2):597–602. doi: 10.1128/iai.25.2.597-602.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Moss J., Fishman P. H., Richards R. L., Alving C. R., Vaughan M., Brady R. O. Choleragen-mediated release of trapped glucose from liposomes containing ganglioside GM1. Proc Natl Acad Sci U S A. 1976 Oct;73(10):3480–3483. doi: 10.1073/pnas.73.10.3480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ohlsson K., Olsson I. The neutral proteases of human granulocytes. Isolation and partial characterization of granulocyte elastases. Eur J Biochem. 1974 Mar 1;42(2):519–527. doi: 10.1111/j.1432-1033.1974.tb03367.x. [DOI] [PubMed] [Google Scholar]
  14. Olsson I., Venge P. Cationic proteins of human granulocytes. I. Isolation of the cationic proteins from the granules of leukaemic myeloid cells. Scand J Haematol. 1972;9(3):204–214. doi: 10.1111/j.1600-0609.1972.tb00932.x. [DOI] [PubMed] [Google Scholar]
  15. Olsson I., Venge P. Cationic proteins of human granulocytes. II. Separation of the cationic proteins of the granules of leukemic myeloid cells. Blood. 1974 Aug;44(2):235–246. [PubMed] [Google Scholar]
  16. Rest R. F., Cooney M. H., Spitznagel J. K. Bactericidal activity of specific and azurophil granules from human neutrophils: studies with outer-membrane mutants of Salmonella typhimurium LT-2. Infect Immun. 1978 Jan;19(1):131–137. doi: 10.1128/iai.19.1.131-137.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rest R. F., Cooney M. H., Spitznagel J. K. Susceptibility of lipopolysaccharide mutants to the bactericidal action of human neutrophil lysosomal fractions. Infect Immun. 1977 Apr;16(1):145–151. doi: 10.1128/iai.16.1.145-151.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rindler-Ludwig R., Schmalzl F., Braunsteiner H. Esterases in human neutrophil granulocytes: evidence for their protease nature. Br J Haematol. 1974 May;27(1):57–64. doi: 10.1111/j.1365-2141.1974.tb06774.x. [DOI] [PubMed] [Google Scholar]
  19. Sampson K. L., Finnerty W. R. Regulation of fatty acid biosynthesis in the hydrocarbon oxidizing microorganism, Acinetobacter sp. Arch Microbiol. 1974;99(3):203–220. doi: 10.1007/BF00696235. [DOI] [PubMed] [Google Scholar]
  20. Walton E. The preparation, properties and action on Staphylococcus aureus of purified fractions from the cationic proteins of rabbit polymorphonuclear leucocytes. Br J Exp Pathol. 1978 Aug;59(4):416–431. [PMC free article] [PubMed] [Google Scholar]
  21. Weiss J., Elsbach P., Olsson I., Odeberg H. Purification and characterization of a potent bactericidal and membrane active protein from the granules of human polymorphonuclear leukocytes. J Biol Chem. 1978 Apr 25;253(8):2664–2672. [PubMed] [Google Scholar]
  22. Zeya H. I., Spitznagel J. K. Arginine-rich proteins of polymorphonuclear leukocyte lysosomes. Antimicrobial specificity and biochemical heterogeneity. J Exp Med. 1968 May 1;127(5):927–941. doi: 10.1084/jem.127.5.927. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES