Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Oct 27;68(Pt 11):i83. doi: 10.1107/S1600536812043747

Redetermination of dysprosium trinickel from single-crystal X-ray data

Volodymyr Levytskyy a,*, Volodymyr Babizhetskyy a, Bohdan Kotur a, Volodymyr Smetana b
PMCID: PMC3515086  PMID: 23284313

Abstract

The crystal structure of the title compound, DyNi3, was redetermined from single-crystal X-ray diffraction data. In comparison with previous studies based on powder X-ray diffraction data [Lemaire & Paccard (1969). Bull. Soc. Fr. Minéral. Cristallogr. 92, 9–16; Tsai et al. (1974). J. Appl. Phys. 45, 3582–3586], the present redetermination revealed refined coordinates and anisotropic displacement parameters for all atoms. The crystal structure of DyNi3 adopts the PuNi3 structure type and can be derived from the CaCu5 structure type as an inter­growth structure. The asymmetric unit contains two Dy sites (site symmetries 3m and -3) and three Ni sites (m, 3m and -3m). The two different coordination polyhedra of Dy are a Frank–Kasper polyhedron formed by four Dy and 12 Ni atoms and a pseudo-Frank–Kasper polyhedron formed by two Dy and 18 Ni atoms. The three different coordination polyhedra of Ni are Frank–Kasper icosa­hedra formed by five Dy and seven Ni atoms, three Dy and nine Ni atoms, and six Dy and six Ni atoms.

Related literature  

For the PuNi3 structure type, see: Cromer & Olsen (1959). For previous powder diffraction studies of the title compoud, see: Paccard & Pauthenet (1967); Lemaire & Paccard (1969); Virkar & Raman (1969); Buschow & van der Goot (1970); Yakinthos & Paccard (1972); Tsai et al. (1974). For related compounds, see: Virkar & Raman (1969); Buschow & van der Goot (1970); Levytskyy et al. (2012). For the CaCu5 structure type, see: Haucke (1940); Nowotny (1942). For the MgCu2 structure type, see: Friauf (1927); Ohba et al. (1984). For inter­growth structures, see: Parthé et al. (1985); Grin (1992).

Experimental  

Crystal data  

  • DyNi3

  • M r = 338.63

  • Trigonal, Inline graphic

  • a = 4.966 (2) Å

  • c = 24.37 (1) Å

  • V = 520.5 (4) Å3

  • Z = 9

  • Mo Kα radiation

  • μ = 55.52 mm−1

  • T = 293 K

  • 0.13 × 0.08 × 0.06 mm

Data collection  

  • Stoe IPDS II diffractometer

  • Absorption correction: multi-scan (PLATON, Spek, 2009) T min = 0.071, T max = 0.182

  • 1516 measured reflections

  • 197 independent reflections

  • 163 reflections with I > 2σ(I)

  • R int = 0.058

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.022

  • wR(F 2) = 0.043

  • S = 1.01

  • 197 reflections

  • 17 parameters

  • Δρmax = 2.77 e Å−3

  • Δρmin = −1.33 e Å−3

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812043747/wm2688sup1.cif

e-68-00i83-sup1.cif (24.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812043747/wm2688Isup2.hkl

e-68-00i83-Isup2.hkl (10.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The existence of the intermetallic phase with composition DyNi3 has been long known before. The first structure report (Paccard & Pauthenet, 1967) of the title compound revealed isotypism with the PuNi3 structure type (Cromer & Olsen, 1959). Lattice parameters were determined from X-ray powder diffraction data without specifying atomic coordinates (Paccard & Pauthenet, 1967; Lemaire & Paccard, 1969; Virkar & Raman, 1969; Buschow & van der Goot, 1970; Tsai et al., 1974). Yakinthos & Paccard (1972) reported crystal structure data for RNi3 compounds (R = Pr, Nd, Tb, Dy, Tm) from powder neutron diffraction data.

The present work contains the results of the full single-crystal X-ray determination of DyNi3, including refinement of the atomic coordinates and the temperature factors for all atoms. These results confirm the belonging to the PuNi3 structure type in space group R3m. A view of the crystal structure of DyNi3 is shown in Fig. 1. As has been noted previously (Yakinthos & Paccard, 1972), the crystal structure of DyNi3 can be derived from the CaCu5 structure type (Haucke, 1940; Nowotny, 1942). It consists of stacks of RX5 blocks (CaCu5-type) and R2X4 blocks (MgCu2-type (Friauf, 1927; Ohba et al., 1984)). Both types have the same Kagome net of Ni atoms that allows a combination of both structural motifs along the 3-fold inversion axis. As a result, it can be considered as an intergrowth structure: R2X4 + RX5 = 3RX3 (Parthé et al., 1985; Grin, 1992).

In Fig. 2 the projection of the unit cell on the ab plane and the resulting coordination polyhedra for all atom types are shown. The coordination number for the Dy1 atom (Wyckoff site 6c, site symmetry 3m). The coordination polyhedron for this atom is a Frank-Kasper polyhedron formed by 4 Dy and 12 Ni atoms. The coordination number for the Dy2 atom (Wyckoff site 3a, site symmetry 3m) is 20. The coordination polyhedron of Dy2 is a pseudo-Frank-Kasper polyhedron formed by 2 Dy and 18 Ni atoms. Although the site symmetries for all Ni atoms are different, the coordination number for all Ni atoms is 12, with Frank-Kasper icosahedra as coordination polyhedra. The Ni1 atom (Wyckoff site 18h, site symmetry .m) is surrounded by 5 Dy atoms and 7 Ni atoms. The Ni2 atom (Wyckoff site 6c, site symmetry 3m) is surrounded by 3 Dy atoms and 9 Ni atoms. The Ni3 atom (Wyckoff site 3b, site symmetry 3m) is surrounded by 6 Dy atoms and 6 Ni atoms.

The interatomic distances in DyNi3 are similar than those in Di2Ni7 (Levytskyy et al., 2012).

Experimental

The sample was prepared of the powdered commercially available pure elements: sublimed bulk pieces of dysprosium metal with a claimed purity of 99.99 at.% (Alfa Aesar, Johnson Matthey) and electrolytic nickel (99.99% pure) piece (Aldrich). A mixture of the powders was compacted in stainless steel dies. The pellet was arc-melted under an argon atmosphere on a water-cooled copper hearth. The alloy button (~1 g) was turned over and remolten three times to improve homogeneity. Subsequently, the sample was annealed in an evacuated silica tube under an argon atmosphere for four weeks at 1070 K. Shiny grey irregular-shaped crystals were isolated mechanically with a help of microscope by crushing the sample.

Refinement

The atomic positions found from the direct methods structure solution were in good agreement with those from the PuNi3 structure type and were used as starting parameters for the structure refinement. The highest Fourier difference peak of 2.77 e Å-3 is at (0 0 0.1019) and 0.91 Å away from the Dy1 atom. The deepest hole of -1.33 e Å-3 is at (0.8263 0.9132 0.0194) and 0.88 Å away from the Dy2 atom.

Figures

Fig. 1.

Fig. 1.

Perspective view of the crystal structure of DyNi3. The unit cell and the blocks of RX5 and R2X4 are emphasized. Atoms are represented by their anisotropic displacement ellipsoids at the 99.9% probability level

Fig. 2.

Fig. 2.

The ab projection of the unit cell and coordination polyhedra for all types of atoms in the DyNi3 structure

Crystal data

DyNi3 Dx = 9.723 Mg m3
Mr = 338.63 Mo Kα radiation, λ = 0.71069 Å
Trigonal, R3m Cell parameters from 1064 reflections
Hall symbol: -R 3 2" θ = 0.8–28.4°
a = 4.966 (2) Å µ = 55.52 mm1
c = 24.37 (1) Å T = 293 K
V = 520.5 (4) Å3 Irregular, grey
Z = 9 0.13 × 0.08 × 0.06 mm
F(000) = 1350

Data collection

Stoe IPDS II diffractometer 197 independent reflections
Radiation source: fine-focus sealed tube 163 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.058
ω scans θmax = 28.4°, θmin = 2.5°
Absorption correction: multi-scan (PLATON, Spek, 2009) h = −6→6
Tmin = 0.071, Tmax = 0.182 k = −6→6
1516 measured reflections l = −32→30

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Primary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.022 Secondary atom site location: difference Fourier map
wR(F2) = 0.043 w = 1/[σ2(Fo2) + (0.0207P)2] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
197 reflections Δρmax = 2.77 e Å3
17 parameters Δρmin = −1.33 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.50038 (13) 0.49962 (13) 0.08188 (5) 0.0116 (3)
Dy1 0.0000 0.0000 0.13920 (4) 0.0135 (2)
Ni2 0.0000 0.0000 0.33306 (9) 0.0143 (5)
Ni3 0.0000 0.0000 0.5000 0.0118 (7)
Dy2 0.0000 0.0000 0.0000 0.0128 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.0112 (5) 0.0112 (5) 0.0141 (7) 0.0069 (6) 0.0003 (3) −0.0003 (3)
Dy1 0.0125 (3) 0.0125 (3) 0.0157 (5) 0.00623 (15) 0.000 0.000
Ni2 0.0153 (7) 0.0153 (7) 0.0123 (12) 0.0077 (4) 0.000 0.000
Ni3 0.0115 (10) 0.0115 (10) 0.0124 (17) 0.0057 (5) 0.000 0.000
Dy2 0.0117 (4) 0.0117 (4) 0.0151 (6) 0.00584 (19) 0.000 0.000

Geometric parameters (Å, º)

Ni1—Ni2i 2.450 (2) Ni2—Dy2xviii 2.8671 (12)
Ni1—Ni2ii 2.464 (2) Ni2—Dy2xv 2.8671 (12)
Ni1—Ni1iii 2.477 (2) Ni2—Ni2xix 2.8671 (12)
Ni1—Ni1iv 2.477 (2) Ni2—Ni2xx 2.8671 (12)
Ni1—Ni1v 2.489 (2) Ni2—Dy2xxi 2.8672 (12)
Ni1—Ni1vi 2.489 (2) Ni2—Ni2xxii 2.8672 (12)
Ni1—Ni3ii 2.5166 (14) Ni3—Ni1xx 2.5166 (14)
Ni1—Dy1vii 2.8489 (11) Ni3—Ni1xv 2.5166 (14)
Ni1—Dy1 2.8489 (11) Ni3—Ni1xxiii 2.5166 (14)
Ni1—Dy1i 3.0869 (18) Ni3—Ni1xvii 2.5166 (14)
Ni1—Dy2 3.1855 (12) Ni3—Ni1xxiv 2.5166 (14)
Ni1—Dy2vii 3.1855 (12) Ni3—Ni1xvi 2.5166 (14)
Dy1—Ni1viii 2.8489 (11) Ni3—Dy1xx 2.9442 (11)
Dy1—Ni1ix 2.8489 (11) Ni3—Dy1xv 2.9442 (11)
Dy1—Ni1x 2.8489 (11) Ni3—Dy1xix 2.9442 (11)
Dy1—Ni1vi 2.8489 (11) Ni3—Dy1xviii 2.9442 (11)
Dy1—Ni1iv 2.8489 (11) Ni3—Dy1xxii 2.9442 (11)
Dy1—Ni3ii 2.9442 (11) Ni3—Dy1xxi 2.9442 (11)
Dy1—Ni3xi 2.9442 (11) Dy2—Ni2i 2.8671 (12)
Dy1—Ni3xii 2.9442 (11) Dy2—Ni2xxv 2.8671 (12)
Dy1—Ni1i 3.0869 (18) Dy2—Ni2ii 2.8671 (12)
Dy1—Ni1xiii 3.0869 (18) Dy2—Ni2xi 2.8671 (12)
Dy1—Ni1xiv 3.0869 (18) Dy2—Ni2xxvi 2.8672 (12)
Ni2—Ni1i 2.450 (2) Dy2—Ni2xii 2.8672 (12)
Ni2—Ni1xiv 2.450 (2) Dy2—Ni1xxvii 3.1855 (12)
Ni2—Ni1xiii 2.450 (2) Dy2—Ni1vi 3.1855 (12)
Ni2—Ni1xv 2.464 (2) Dy2—Ni1iv 3.1855 (12)
Ni2—Ni1xvi 2.464 (2) Dy2—Ni1xxviii 3.1855 (12)
Ni2—Ni1xvii 2.464 (2) Dy2—Ni1viii 3.1855 (12)
Ni2i—Ni1—Ni2ii 71.39 (4) Ni1xvii—Ni2—Ni2xix 54.07 (7)
Ni2i—Ni1—Ni1iii 59.63 (4) Dy2xviii—Ni2—Ni2xix 179.60 (14)
Ni2ii—Ni1—Ni1iii 120.32 (4) Dy2xv—Ni2—Ni2xix 60.0
Ni2i—Ni1—Ni1iv 59.63 (4) Ni1i—Ni2—Ni2xx 107.20 (9)
Ni2ii—Ni1—Ni1iv 120.32 (4) Ni1xiv—Ni2—Ni2xx 107.20 (9)
Ni1iii—Ni1—Ni1iv 60.0 Ni1xiii—Ni2—Ni2xx 54.54 (7)
Ni2i—Ni1—Ni1v 120.37 (4) Ni1xv—Ni2—Ni2xx 106.72 (9)
Ni2ii—Ni1—Ni1v 59.68 (4) Ni1xvi—Ni2—Ni2xx 54.07 (7)
Ni1iii—Ni1—Ni1v 120.0 Ni1xvii—Ni2—Ni2xx 106.72 (9)
Ni1iv—Ni1—Ni1v 180.0 Dy2xviii—Ni2—Ni2xx 60.0
Ni2i—Ni1—Ni1vi 120.37 (4) Dy2xv—Ni2—Ni2xx 179.60 (14)
Ni2ii—Ni1—Ni1vi 59.68 (4) Ni2xix—Ni2—Ni2xx 119.999 (2)
Ni1iii—Ni1—Ni1vi 180.00 (5) Ni1i—Ni2—Dy2xxi 125.86 (8)
Ni1iv—Ni1—Ni1vi 120.0 Ni1xiv—Ni2—Dy2xxi 73.14 (3)
Ni1v—Ni1—Ni1vi 60.0 Ni1xiii—Ni2—Dy2xxi 73.14 (3)
Ni2i—Ni1—Ni3ii 179.09 (6) Ni1xv—Ni2—Dy2xxi 125.53 (8)
Ni2ii—Ni1—Ni3ii 109.52 (6) Ni1xvi—Ni2—Dy2xxi 72.94 (3)
Ni1iii—Ni1—Ni3ii 119.63 (2) Ni1xvii—Ni2—Dy2xxi 72.94 (3)
Ni1iv—Ni1—Ni3ii 119.63 (2) Dy2xviii—Ni2—Dy2xxi 119.999 (1)
Ni1v—Ni1—Ni3ii 60.37 (2) Dy2xv—Ni2—Dy2xxi 119.999 (1)
Ni1vi—Ni1—Ni3ii 60.37 (2) Ni2xix—Ni2—Dy2xxi 60.0
Ni2i—Ni1—Dy1vii 113.50 (3) Ni2xx—Ni2—Dy2xxi 60.0
Ni2ii—Ni1—Dy1vii 113.43 (3) Ni1i—Ni2—Ni2xxii 54.54 (7)
Ni1iii—Ni1—Dy1vii 64.23 (2) Ni1xiv—Ni2—Ni2xxii 107.20 (9)
Ni1iv—Ni1—Dy1vii 115.90 (2) Ni1xiii—Ni2—Ni2xxii 107.20 (9)
Ni1v—Ni1—Dy1vii 64.10 (2) Ni1xv—Ni2—Ni2xxii 54.07 (7)
Ni1vi—Ni1—Dy1vii 115.77 (2) Ni1xvi—Ni2—Ni2xxii 106.72 (9)
Ni3ii—Ni1—Dy1vii 66.22 (3) Ni1xvii—Ni2—Ni2xxii 106.72 (9)
Ni2i—Ni1—Dy1 113.50 (3) Dy2xviii—Ni2—Ni2xxii 60.0
Ni2ii—Ni1—Dy1 113.43 (3) Dy2xv—Ni2—Ni2xxii 60.0
Ni1iii—Ni1—Dy1 115.90 (2) Ni2xix—Ni2—Ni2xxii 119.997 (2)
Ni1iv—Ni1—Dy1 64.23 (2) Ni2xx—Ni2—Ni2xxii 119.997 (2)
Ni1v—Ni1—Dy1 115.77 (2) Dy2xxi—Ni2—Ni2xxii 179.60 (14)
Ni1vi—Ni1—Dy1 64.10 (2) Ni1xx—Ni3—Ni1xv 180.00 (3)
Ni3ii—Ni1—Dy1 66.22 (3) Ni1xx—Ni3—Ni1xxiii 59.27 (5)
Dy1vii—Ni1—Dy1 121.28 (6) Ni1xv—Ni3—Ni1xxiii 120.73 (5)
Ni2i—Ni1—Dy1i 116.67 (6) Ni1xx—Ni3—Ni1xvii 120.73 (5)
Ni2ii—Ni1—Dy1i 171.94 (6) Ni1xv—Ni3—Ni1xvii 59.27 (5)
Ni1iii—Ni1—Dy1i 66.34 (2) Ni1xxiii—Ni3—Ni1xvii 180.0
Ni1iv—Ni1—Dy1i 66.34 (2) Ni1xx—Ni3—Ni1xxiv 59.27 (5)
Ni1v—Ni1—Dy1i 113.66 (2) Ni1xv—Ni3—Ni1xxiv 120.73 (5)
Ni1vi—Ni1—Dy1i 113.66 (2) Ni1xxiii—Ni3—Ni1xxiv 59.27 (5)
Ni3ii—Ni1—Dy1i 62.42 (4) Ni1xvii—Ni3—Ni1xxiv 120.73 (5)
Dy1vii—Ni1—Dy1i 64.28 (3) Ni1xx—Ni3—Ni1xvi 120.73 (5)
Dy1—Ni1—Dy1i 64.28 (3) Ni1xv—Ni3—Ni1xvi 59.27 (5)
Ni2i—Ni1—Dy2 59.47 (3) Ni1xxiii—Ni3—Ni1xvi 120.73 (5)
Ni2ii—Ni1—Dy2 59.37 (3) Ni1xvii—Ni3—Ni1xvi 59.27 (5)
Ni1iii—Ni1—Dy2 112.99 (2) Ni1xxiv—Ni3—Ni1xvi 180.0
Ni1iv—Ni1—Dy2 67.12 (2) Ni1xx—Ni3—Dy1xx 62.314 (16)
Ni1v—Ni1—Dy2 112.88 (2) Ni1xv—Ni3—Dy1xx 117.686 (16)
Ni1vi—Ni1—Dy2 67.01 (2) Ni1xxiii—Ni3—Dy1xx 62.314 (16)
Ni3ii—Ni1—Dy2 120.91 (3) Ni1xvii—Ni3—Dy1xx 117.686 (16)
Dy1vii—Ni1—Dy2 170.57 (4) Ni1xxiv—Ni3—Dy1xx 111.68 (4)
Dy1—Ni1—Dy2 68.15 (3) Ni1xvi—Ni3—Dy1xx 68.32 (4)
Dy1i—Ni1—Dy2 123.75 (3) Ni1xx—Ni3—Dy1xv 117.686 (16)
Ni2i—Ni1—Dy2vii 59.47 (3) Ni1xv—Ni3—Dy1xv 62.314 (16)
Ni2ii—Ni1—Dy2vii 59.37 (3) Ni1xxiii—Ni3—Dy1xv 117.686 (16)
Ni1iii—Ni1—Dy2vii 67.12 (2) Ni1xvii—Ni3—Dy1xv 62.314 (16)
Ni1iv—Ni1—Dy2vii 112.99 (2) Ni1xxiv—Ni3—Dy1xv 68.32 (4)
Ni1v—Ni1—Dy2vii 67.01 (2) Ni1xvi—Ni3—Dy1xv 111.68 (4)
Ni1vi—Ni1—Dy2vii 112.88 (2) Dy1xx—Ni3—Dy1xv 180.0
Ni3ii—Ni1—Dy2vii 120.91 (3) Ni1xx—Ni3—Dy1xix 62.314 (16)
Dy1vii—Ni1—Dy2vii 68.15 (3) Ni1xv—Ni3—Dy1xix 117.686 (16)
Dy1—Ni1—Dy2vii 170.57 (4) Ni1xxiii—Ni3—Dy1xix 111.68 (4)
Dy1i—Ni1—Dy2vii 123.75 (3) Ni1xvii—Ni3—Dy1xix 68.32 (4)
Dy2—Ni1—Dy2vii 102.42 (5) Ni1xxiv—Ni3—Dy1xix 62.314 (16)
Ni1viii—Dy1—Ni1ix 51.80 (5) Ni1xvi—Ni3—Dy1xix 117.686 (16)
Ni1viii—Dy1—Ni1x 51.54 (5) Dy1xx—Ni3—Dy1xix 114.993 (13)
Ni1ix—Dy1—Ni1x 98.01 (4) Dy1xv—Ni3—Dy1xix 65.007 (13)
Ni1viii—Dy1—Ni1 121.28 (6) Ni1xx—Ni3—Dy1xviii 117.686 (16)
Ni1ix—Dy1—Ni1 98.01 (4) Ni1xv—Ni3—Dy1xviii 62.314 (16)
Ni1x—Dy1—Ni1 98.01 (4) Ni1xxiii—Ni3—Dy1xviii 68.32 (4)
Ni1viii—Dy1—Ni1vi 98.01 (4) Ni1xvii—Ni3—Dy1xviii 111.68 (4)
Ni1ix—Dy1—Ni1vi 51.54 (5) Ni1xxiv—Ni3—Dy1xviii 117.686 (16)
Ni1x—Dy1—Ni1vi 121.28 (6) Ni1xvi—Ni3—Dy1xviii 62.314 (16)
Ni1—Dy1—Ni1vi 51.80 (5) Dy1xx—Ni3—Dy1xviii 65.007 (13)
Ni1viii—Dy1—Ni1iv 98.01 (4) Dy1xv—Ni3—Dy1xviii 114.993 (13)
Ni1ix—Dy1—Ni1iv 121.28 (6) Dy1xix—Ni3—Dy1xviii 180.00 (3)
Ni1x—Dy1—Ni1iv 51.80 (5) Ni1xx—Ni3—Dy1xxii 111.68 (4)
Ni1—Dy1—Ni1iv 51.54 (5) Ni1xv—Ni3—Dy1xxii 68.32 (4)
Ni1vi—Dy1—Ni1iv 98.01 (4) Ni1xxiii—Ni3—Dy1xxii 62.314 (16)
Ni1viii—Dy1—Ni3ii 147.89 (3) Ni1xvii—Ni3—Dy1xxii 117.686 (16)
Ni1ix—Dy1—Ni3ii 96.33 (2) Ni1xxiv—Ni3—Dy1xxii 62.314 (16)
Ni1x—Dy1—Ni3ii 147.89 (3) Ni1xvi—Ni3—Dy1xxii 117.686 (16)
Ni1—Dy1—Ni3ii 51.46 (3) Dy1xx—Ni3—Dy1xxii 114.992 (13)
Ni1vi—Dy1—Ni3ii 51.46 (3) Dy1xv—Ni3—Dy1xxii 65.008 (13)
Ni1iv—Dy1—Ni3ii 96.33 (2) Dy1xix—Ni3—Dy1xxii 114.992 (13)
Ni1viii—Dy1—Ni3xi 51.46 (3) Dy1xviii—Ni3—Dy1xxii 65.008 (13)
Ni1ix—Dy1—Ni3xi 51.46 (3) Ni1xx—Ni3—Dy1xxi 68.32 (4)
Ni1x—Dy1—Ni3xi 96.33 (2) Ni1xv—Ni3—Dy1xxi 111.68 (4)
Ni1—Dy1—Ni3xi 147.89 (3) Ni1xxiii—Ni3—Dy1xxi 117.686 (16)
Ni1vi—Dy1—Ni3xi 96.33 (2) Ni1xvii—Ni3—Dy1xxi 62.314 (16)
Ni1iv—Dy1—Ni3xi 147.89 (3) Ni1xxiv—Ni3—Dy1xxi 117.686 (16)
Ni3ii—Dy1—Ni3xi 114.993 (13) Ni1xvi—Ni3—Dy1xxi 62.314 (16)
Ni1viii—Dy1—Ni3xii 96.33 (2) Dy1xx—Ni3—Dy1xxi 65.008 (13)
Ni1ix—Dy1—Ni3xii 147.89 (3) Dy1xv—Ni3—Dy1xxi 114.992 (13)
Ni1x—Dy1—Ni3xii 51.46 (3) Dy1xix—Ni3—Dy1xxi 65.008 (13)
Ni1—Dy1—Ni3xii 96.33 (2) Dy1xviii—Ni3—Dy1xxi 114.992 (13)
Ni1vi—Dy1—Ni3xii 147.89 (3) Dy1xxii—Ni3—Dy1xxi 180.00 (3)
Ni1iv—Dy1—Ni3xii 51.46 (3) Ni2i—Dy2—Ni2xxv 120.0
Ni3ii—Dy1—Ni3xii 114.992 (13) Ni2i—Dy2—Ni2ii 60.0
Ni3xi—Dy1—Ni3xii 114.992 (13) Ni2xxv—Dy2—Ni2ii 180.0
Ni1viii—Dy1—Ni1i 115.72 (3) Ni2i—Dy2—Ni2xi 180.0
Ni1ix—Dy1—Ni1i 141.67 (2) Ni2xxv—Dy2—Ni2xi 60.0
Ni1x—Dy1—Ni1i 94.88 (4) Ni2ii—Dy2—Ni2xi 120.0
Ni1—Dy1—Ni1i 115.72 (3) Ni2i—Dy2—Ni2xxvi 120.0
Ni1vi—Dy1—Ni1i 141.67 (2) Ni2xxv—Dy2—Ni2xxvi 120.0
Ni1iv—Dy1—Ni1i 94.88 (4) Ni2ii—Dy2—Ni2xxvi 60.0
Ni3ii—Dy1—Ni1i 91.38 (3) Ni2xi—Dy2—Ni2xxvi 60.0
Ni3xi—Dy1—Ni1i 91.38 (3) Ni2i—Dy2—Ni2xii 60.0
Ni3xii—Dy1—Ni1i 49.26 (2) Ni2xxv—Dy2—Ni2xii 60.0
Ni1viii—Dy1—Ni1xiii 141.67 (2) Ni2ii—Dy2—Ni2xii 120.0
Ni1ix—Dy1—Ni1xiii 115.72 (3) Ni2xi—Dy2—Ni2xii 120.0
Ni1x—Dy1—Ni1xiii 141.67 (2) Ni2xxvi—Dy2—Ni2xii 180.0
Ni1—Dy1—Ni1xiii 94.88 (4) Ni2i—Dy2—Ni1 47.39 (4)
Ni1vi—Dy1—Ni1xiii 94.88 (4) Ni2xxv—Dy2—Ni1 132.30 (4)
Ni1iv—Dy1—Ni1xiii 115.72 (3) Ni2ii—Dy2—Ni1 47.70 (4)
Ni3ii—Dy1—Ni1xiii 49.26 (2) Ni2xi—Dy2—Ni1 132.61 (4)
Ni3xi—Dy1—Ni1xiii 91.38 (3) Ni2xxvi—Dy2—Ni1 89.97 (4)
Ni3xii—Dy1—Ni1xiii 91.39 (3) Ni2xii—Dy2—Ni1 90.03 (4)
Ni1i—Dy1—Ni1xiii 47.32 (4) Ni2i—Dy2—Ni1xxvii 132.61 (4)
Ni1viii—Dy1—Ni1xiv 94.88 (4) Ni2xxv—Dy2—Ni1xxvii 47.70 (4)
Ni1ix—Dy1—Ni1xiv 94.88 (4) Ni2ii—Dy2—Ni1xxvii 132.30 (4)
Ni1x—Dy1—Ni1xiv 115.72 (3) Ni2xi—Dy2—Ni1xxvii 47.39 (4)
Ni1—Dy1—Ni1xiv 141.67 (2) Ni2xxvi—Dy2—Ni1xxvii 90.03 (4)
Ni1vi—Dy1—Ni1xiv 115.72 (3) Ni2xii—Dy2—Ni1xxvii 89.97 (4)
Ni1iv—Dy1—Ni1xiv 141.67 (2) Ni1—Dy2—Ni1xxvii 180.00 (3)
Ni3ii—Dy1—Ni1xiv 91.38 (3) Ni2i—Dy2—Ni1vi 89.97 (4)
Ni3xi—Dy1—Ni1xiv 49.26 (2) Ni2xxv—Dy2—Ni1vi 132.30 (4)
Ni3xii—Dy1—Ni1xiv 91.39 (3) Ni2ii—Dy2—Ni1vi 47.70 (4)
Ni1i—Dy1—Ni1xiv 47.32 (4) Ni2xi—Dy2—Ni1vi 90.03 (4)
Ni1xiii—Dy1—Ni1xiv 47.32 (4) Ni2xxvi—Dy2—Ni1vi 47.39 (4)
Ni1i—Ni2—Ni1xiv 60.75 (7) Ni2xii—Dy2—Ni1vi 132.61 (4)
Ni1i—Ni2—Ni1xiii 60.75 (7) Ni1—Dy2—Ni1vi 45.99 (4)
Ni1xiv—Ni2—Ni1xiii 60.75 (7) Ni1xxvii—Dy2—Ni1vi 134.01 (4)
Ni1i—Ni2—Ni1xv 108.61 (4) Ni2i—Dy2—Ni1iv 47.39 (4)
Ni1xiv—Ni2—Ni1xv 146.078 (19) Ni2xxv—Dy2—Ni1iv 89.97 (4)
Ni1xiii—Ni2—Ni1xv 146.078 (19) Ni2ii—Dy2—Ni1iv 90.03 (4)
Ni1i—Ni2—Ni1xvi 146.078 (19) Ni2xi—Dy2—Ni1iv 132.61 (4)
Ni1xiv—Ni2—Ni1xvi 146.077 (19) Ni2xxvi—Dy2—Ni1iv 132.30 (4)
Ni1xiii—Ni2—Ni1xvi 108.61 (4) Ni2xii—Dy2—Ni1iv 47.70 (4)
Ni1xv—Ni2—Ni1xvi 60.65 (7) Ni1—Dy2—Ni1iv 45.77 (4)
Ni1i—Ni2—Ni1xvii 146.078 (19) Ni1xxvii—Dy2—Ni1iv 134.23 (4)
Ni1xiv—Ni2—Ni1xvii 108.61 (4) Ni1vi—Dy2—Ni1iv 84.91 (3)
Ni1xiii—Ni2—Ni1xvii 146.077 (19) Ni2i—Dy2—Ni1xxviii 90.03 (4)
Ni1xv—Ni2—Ni1xvii 60.65 (7) Ni2xxv—Dy2—Ni1xxviii 47.70 (4)
Ni1xvi—Ni2—Ni1xvii 60.65 (7) Ni2ii—Dy2—Ni1xxviii 132.30 (4)
Ni1i—Ni2—Dy2xviii 73.14 (3) Ni2xi—Dy2—Ni1xxviii 89.97 (4)
Ni1xiv—Ni2—Dy2xviii 125.86 (8) Ni2xxvi—Dy2—Ni1xxviii 132.61 (4)
Ni1xiii—Ni2—Dy2xviii 73.14 (3) Ni2xii—Dy2—Ni1xxviii 47.39 (4)
Ni1xv—Ni2—Dy2xviii 72.94 (3) Ni1—Dy2—Ni1xxviii 134.01 (4)
Ni1xvi—Ni2—Dy2xviii 72.94 (3) Ni1xxvii—Dy2—Ni1xxviii 45.99 (4)
Ni1xvii—Ni2—Dy2xviii 125.53 (8) Ni1vi—Dy2—Ni1xxviii 180.00 (5)
Ni1i—Ni2—Dy2xv 73.14 (3) Ni1iv—Dy2—Ni1xxviii 95.09 (3)
Ni1xiv—Ni2—Dy2xv 73.14 (3) Ni2i—Dy2—Ni1viii 132.30 (4)
Ni1xiii—Ni2—Dy2xv 125.86 (8) Ni2xxv—Dy2—Ni1viii 47.39 (4)
Ni1xv—Ni2—Dy2xv 72.94 (3) Ni2ii—Dy2—Ni1viii 132.61 (4)
Ni1xvi—Ni2—Dy2xv 125.53 (8) Ni2xi—Dy2—Ni1viii 47.70 (4)
Ni1xvii—Ni2—Dy2xv 72.94 (3) Ni2xxvi—Dy2—Ni1viii 89.97 (4)
Dy2xviii—Ni2—Dy2xv 120.000 (1) Ni2xii—Dy2—Ni1viii 90.03 (4)
Ni1i—Ni2—Ni2xix 107.20 (9) Ni1—Dy2—Ni1viii 102.42 (5)
Ni1xiv—Ni2—Ni2xix 54.54 (7) Ni1xxvii—Dy2—Ni1viii 77.58 (5)
Ni1xiii—Ni2—Ni2xix 107.20 (9) Ni1vi—Dy2—Ni1viii 84.91 (3)
Ni1xv—Ni2—Ni2xix 106.72 (9) Ni1iv—Dy2—Ni1viii 84.91 (3)
Ni1xvi—Ni2—Ni2xix 106.72 (9) Ni1xxviii—Dy2—Ni1viii 95.09 (3)

Symmetry codes: (i) −x+2/3, −y+1/3, −z+1/3; (ii) x+1/3, y+2/3, z−1/3; (iii) −x+y+1, −x+1, z; (iv) −y+1, xy, z; (v) −y+1, xy+1, z; (vi) −x+y, −x+1, z; (vii) x+1, y+1, z; (viii) x−1, y−1, z; (ix) −y, xy, z; (x) −x+y, −x, z; (xi) x−2/3, y−1/3, z−1/3; (xii) x+1/3, y−1/3, z−1/3; (xiii) y−1/3, −x+y+1/3, −z+1/3; (xiv) xy−1/3, x−2/3, −z+1/3; (xv) x−1/3, y−2/3, z+1/3; (xvi) −y+2/3, xy+1/3, z+1/3; (xvii) −x+y−1/3, −x+1/3, z+1/3; (xviii) x+2/3, y+1/3, z+1/3; (xix) −x−2/3, −y−1/3, −z+2/3; (xx) −x+1/3, −y+2/3, −z+2/3; (xxi) x−1/3, y+1/3, z+1/3; (xxii) −x+1/3, −y−1/3, −z+2/3; (xxiii) xy+1/3, x−1/3, −z+2/3; (xxiv) y−2/3, −x+y−1/3, −z+2/3; (xxv) −x−1/3, −y−2/3, −z+1/3; (xxvi) −x−1/3, −y+1/3, −z+1/3; (xxvii) −x, −y, −z; (xxviii) xy, x−1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2688).

References

  1. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  2. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.
  3. Buschow, K. H. J. & van der Goot, A. S. (1970). J. Less Common Met. 22, 419–428.
  4. Cromer, D. T. & Olsen, C. E. (1959). Acta Cryst. 12, 689–694.
  5. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  6. Friauf, J. B. (1927). J. Am. Chem. Soc. 49, 3107–3114.
  7. Grin, Yu. (1992). Modern Perspectives in Inorganic Crystal Chemistry, edited by E. Parthé, pp. 77–95. Dordrecht: Kluwer Academic Publishers.
  8. Haucke, W. (1940). Z. Anorg. Allg. Chem. 244, 17–22.
  9. Lemaire, R. & Paccard, D. (1969). Bull. Soc. Fr. Minéral. Cristallogr. 92, 9–16.
  10. Levytskyy, V., Babizhetskyy, V., Kotur, B. & Smetana, V. (2012). Acta Cryst. E68, i20. [DOI] [PMC free article] [PubMed]
  11. Nowotny, H. (1942). Z. Metallkd. 34, 247–253.
  12. Ohba, T., Kitano, Y. & Komura, Y. (1984). Acta Cryst. C40, 1–5.
  13. Paccard, D. & Pauthenet, R. (1967). Compt. Rend. Sci. Ser. B. 264, 1056–1059.
  14. Parthé, E., Chabot, B. A. & Censual, K. (1985). Chimia, 39, 164–174.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  17. Stoe & Cie. (2009). X-AREA Stoe & Cie, Darmstadt, Germany.
  18. Tsai, S. C., Narasimhan, K. S. V. L., Kemesh, C. J. & Butera, R. A. (1974). J. Appl. Phys. 45, 3582–3586.
  19. Virkar, A. V. & Raman, A. (1969). J. Less Common Met. 18, 59–66.
  20. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  21. Yakinthos, J. & Paccard, D. (1972). Solid State Commun. 10, 989–993.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812043747/wm2688sup1.cif

e-68-00i83-sup1.cif (24.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812043747/wm2688Isup2.hkl

e-68-00i83-Isup2.hkl (10.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES