Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Oct 6;68(Pt 11):m1330–m1331. doi: 10.1107/S1600536812040810

trans-Dichloridobis[dicyclo­hex­yl(2,4,6-trimethyl­phen­yl)phosphane-κP]palladium(II)

Isaac Buthelezi a, Haleden Chiririwa a,*, Hezron Ogutu a, Reinout Meijboom a,*
PMCID: PMC3515096  PMID: 23284323

Abstract

The title compound, [PdCl2(C21H33P)2], forms a monomeric complex with a trans-square-planar coordination geometry about the PdII atom which lies on an inversion centre. The Pd—P bond lengths are 2.3760 (13) Å, while the Pd—Cl bond lengths are 2.3172 (14) Å. The observed structure was found to be closely related to that of trans-dichloridobis[dicyclo­hex­yl(phen­yl)phosphane-κP]palladium(II), [PdCl2{P(C6H11)2(C6H5)}2] [Burgoyne et al. (2012). Acta Cryst. E68, m404].

Related literature  

For a review on related compounds, see: Spessard & Miessler (1996). For the synthesis of the starting materials, see: Drew & Doyle (1990). For similar R—P2PdCl2 compounds, see: Ogutu & Meijboom (2011); Muller & Meijboom (2010a ,b ). For their applications, see: Bedford et al. (2004). For the closely related structure of trans-dichloridobis[dicyclo­hex­yl(phen­yl)phos­phane-κP]palladium(II), see: Burgoyne et al. (2012). For isotypic structures, see: Clarke et al. (2003); Grushin et al. (1994); Vuoti et al. (2008).graphic file with name e-68-m1330-scheme1.jpg

Experimental  

Crystal data  

  • [PdCl2(C21H33P)2]

  • M r = 810.19

  • Triclinic, Inline graphic

  • a = 9.466 (5) Å

  • b = 10.625 (5) Å

  • c = 11.527 (5) Å

  • α = 63.932 (5)°

  • β = 84.500 (5)°

  • γ = 75.874 (5)°

  • V = 1009.8 (8) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.70 mm−1

  • T = 100 K

  • 0.22 × 0.17 × 0.16 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.861, T max = 0.896

  • 17391 measured reflections

  • 4932 independent reflections

  • 3385 reflections with I > 2σ(I)

  • R int = 0.082

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.061

  • wR(F 2) = 0.165

  • S = 1.02

  • 4932 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 1.05 e Å−3

  • Δρmin = −1.93 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812040810/zj2095sup1.cif

e-68-m1330-sup1.cif (26KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812040810/zj2095Isup2.hkl

e-68-m1330-Isup2.hkl (241.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial assistance from the South African National Research Foundation (SA NRF), the Research Fund of the University of Johannesburg, TESP and SASOL is gratefully acknowledged.

supplementary crystallographic information

Comment

Complexes involving palladium metal centres are amongst some of the most popular catalytic precursors in organic synthesis due to their catalytic abilities. They are used in carbon-carbon bond formation reactions like the Heck, Stille and Suzuki reactions (Bedford et al., 2004).[PdCl2(L)2] (L = tertiary phosphine, arsine or stibine) complexes can conveniently be prepared by the substitution of 1,5-cyclooctadiene (COD) from [PdCl2(COD)]. The title compound, trans-[PdCl2(C21H33P)2], crystallizes with the Pd atom on a center of symmetry and each pair of equivalent ligands in a mutually trans orientation.The geometry is,therefore, slightly distorted square planar and the Pd atom is not elevated out of the coordinating atom plane. All angles in the coordination polyhedron are close to the ideal value of 90°, with Cl2—Pd1—P1 = 88.39 (6)° and Cl2—Pd1—P1 = 91.61 (6)°. As required by the crystallographic symmetry, the Cl2—Pd1—Cl2 and P1—Pd1—P1 angles are 180°. The symmetry code used to define atoms through the inversion point is: 1 - x, -y, 1 - z.

The title compound compares well with other closely related PdII complexes from the literature containing two chloro and two tertiary phosphine ligands in a trans geometry (Muller & Meijboom, 2010a, b). The title compound, having a Pd1—Cl2 bond length of 2.3172 (14) Å and a Pd—P bond length of 2.3760 (13) Å, fits well into the typical range for complexes of this kind. Notably the title compound did not crystallize as a solvated complex; these type of PdII complexes have a tendency to crystallize as solvates (Ogutu & Meijboom, 2011).

Notably, the title compound is quintessentially isostructural with: [PdCl2{P(C6H11)3}2] (Grushin et al., 1994); [PdBr2{P(C6H11)3}2] (Clarke et al., 2003); and [PdCl2{P(C6H11)2(C7H7)}2] (Vuoti et al., 2008) ((C6H11) = cyclohexyl, (C7H7) = o-tolyl). The Pd–P and Pd–X (X = Br and Cl) bond lengths were compared and it was observed that they were all within the same range of 2.3–2.4 Å. The angles between the bonds around the Pd atom were all observed to be approximately right angles.

Experimental

Dicyclohexyl-(2,4,6 trimethyl phenyl)phosphine (0.11 g, 0.35 mmol) was dissolved in acetone (5cm3). A solution of [Pd(COD)Cl2] (0.05 g,0.17 mmol) in acetone (5 cm3) was added to the phosphine solution. The mixture was stirred for 5 minutes, after which the solution was left to crystallize. Yellow crystals of the title compound suitable for X-ray diffraction studies were obtained. 1H NMR (CDCl3, 400 MHz,p.p.m.): 6.9–6.8(m, 4H), 2.3 (m, 18H),1.5–1.4 (m, 16H),1.5 (m, 8H),1.6 (m, 16H),1.3 (m, 16H), 1.4 (m, 4H).31P NMR (CDCl3, 162.0 MHz, p.p.m.): 80.82. FTIR (cm-1):2920, 2850, 1713, 1678, 1597, 1553, 1442, 1337, 1074, 998, 883, 846, 728,

Refinement

The aromatic, methine, and methyl H atoms were placed in geometrically idealized positions (C—H = 0.95–0.98) and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) for aromatic and methine H atoms, and Uiso(H) = 1.5Ueq(C) for methyl H atoms respectively. Methyl torsion angles were refined from electron density.

Figures

Fig. 1.

Fig. 1.

The structure of the trans-Dichloridobis[dicyclohexyl-(2,4,6 trimethyl phenyl)phosphane-jP] palladium(II) showing 50% probability displacement ellipsoids. Symmetry code to generate molecule through inversiont point: 1 - x, -y, 1 - z.

Fig. 2.

Fig. 2.

A perspective of trans-Dichloridobis[dicyclohexyl-(2,4,6 trimethyl phenyl)phosphane-jP] palladium(II) showing the molecular packing modes in the crystals.

Crystal data

C42H66Cl2P2Pd Z = 1
Mr = 810.19 F(000) = 428
Triclinic, P1 Dx = 1.332 Mg m3Dm = 1.332 Mg m3Dm measured by not measured
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71069 Å
a = 9.466 (5) Å Cell parameters from 3294 reflections
b = 10.625 (5) Å θ = 2.2–28.3°
c = 11.527 (5) Å µ = 0.70 mm1
α = 63.932 (5)° T = 100 K
β = 84.500 (5)° Cube, yellow
γ = 75.874 (5)° 0.22 × 0.17 × 0.16 mm
V = 1009.8 (8) Å3

Data collection

Bruker APEXII CCD diffractometer 3385 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.082
φ and ω scans θmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −12→12
Tmin = 0.861, Tmax = 0.896 k = −14→14
17391 measured reflections l = −15→15
4932 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.165 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0919P)2] where P = (Fo2 + 2Fc2)/3
4932 reflections (Δ/σ)max < 0.001
217 parameters Δρmax = 1.05 e Å3
0 restraints Δρmin = −1.93 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pd1 0.5 0 0.5 0.02770 (17)
Cl2 0.66664 (12) 0.13206 (13) 0.48974 (13) 0.0403 (3)
P1 0.31238 (11) 0.14874 (12) 0.56557 (10) 0.0279 (3)
C16 0.3797 (5) 0.2560 (5) 0.6307 (4) 0.0332 (10)
C11 0.1511 (6) 0.2214 (6) 0.3425 (5) 0.0420 (12)
H11A 0.0817 0.1659 0.4001 0.05*
H11B 0.2285 0.1549 0.3197 0.05*
C6 0.0268 (5) 0.1246 (5) 0.6872 (5) 0.0363 (11)
C2 0.2357 (5) −0.0711 (5) 0.7937 (5) 0.0358 (11)
C1 0.1790 (5) 0.0641 (5) 0.6878 (4) 0.0316 (10)
H1 0.1609 0.0137 0.6369 0.038*
C4 −0.0041 (6) −0.0812 (6) 0.8892 (5) 0.0438 (12)
C21 0.4639 (5) 0.1621 (6) 0.7596 (5) 0.0405 (12)
H21A 0.3976 0.1123 0.8265 0.049*
H21B 0.5438 0.0881 0.7492 0.049*
C17 0.2603 (5) 0.3749 (5) 0.6446 (5) 0.0415 (12)
H17A 0.2087 0.4373 0.5608 0.05*
H17B 0.1885 0.3314 0.7089 0.05*
C15 0.3216 (5) 0.3781 (6) 0.3220 (5) 0.0435 (12)
H15A 0.3587 0.4253 0.3663 0.052*
H15B 0.406 0.3152 0.3018 0.052*
C3 0.1420 (6) −0.1368 (5) 0.8900 (5) 0.0427 (12)
H3 0.1822 −0.2255 0.9604 0.051*
C12 0.0713 (6) 0.3418 (6) 0.2195 (5) 0.0501 (14)
H12A 0.028 0.2989 0.1747 0.06*
H12B −0.009 0.4051 0.2434 0.06*
C7 0.3943 (6) −0.1527 (6) 0.8096 (5) 0.0491 (14)
H7A 0.4314 −0.173 0.894 0.074*
H7B 0.4521 −0.0943 0.7411 0.074*
H7C 0.4014 −0.2434 0.8039 0.074*
C10 0.2180 (5) 0.2864 (5) 0.4122 (4) 0.0300 (9)
H10 0.1369 0.3521 0.4343 0.036*
C18 0.3265 (6) 0.4651 (6) 0.6878 (7) 0.0567 (16)
H18A 0.3939 0.5129 0.6208 0.068*
H18B 0.248 0.5408 0.6971 0.068*
C20 0.5269 (6) 0.2537 (7) 0.8028 (6) 0.0527 (14)
H20A 0.5996 0.2965 0.7393 0.063*
H20B 0.5774 0.1917 0.8871 0.063*
C9 −0.0548 (5) 0.2671 (6) 0.5890 (5) 0.0477 (13)
H9A −0.155 0.2882 0.6177 0.071*
H9B −0.056 0.2633 0.5057 0.071*
H9C −0.0064 0.3428 0.5796 0.071*
C13 0.1717 (7) 0.4301 (6) 0.1292 (5) 0.0555 (15)
H13A 0.1159 0.5087 0.0527 0.067*
H13B 0.2475 0.3689 0.0991 0.067*
C5 −0.0587 (5) 0.0501 (6) 0.7852 (5) 0.0449 (13)
H5 −0.1604 0.0906 0.7816 0.054*
C19 0.4088 (6) 0.3735 (7) 0.8154 (6) 0.0565 (15)
H19A 0.3405 0.3313 0.8844 0.068*
H19B 0.4537 0.434 0.8392 0.068*
C14 0.2432 (6) 0.4931 (6) 0.1962 (5) 0.0517 (14)
H14A 0.1681 0.564 0.2157 0.062*
H14B 0.3144 0.5446 0.1373 0.062*
C8 −0.1042 (7) −0.1536 (7) 0.9946 (6) 0.0652 (18)
H8A −0.0615 −0.257 1.038 0.098*
H8B −0.199 −0.1378 0.9569 0.098*
H8C −0.1171 −0.1129 1.0575 0.098*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pd1 0.0255 (3) 0.0175 (3) 0.0286 (3) 0.00253 (18) 0.00010 (18) −0.00339 (19)
Cl2 0.0323 (6) 0.0314 (6) 0.0560 (8) −0.0062 (5) 0.0050 (5) −0.0190 (6)
P1 0.0264 (6) 0.0194 (6) 0.0277 (6) 0.0018 (4) −0.0007 (4) −0.0043 (5)
C16 0.034 (2) 0.027 (2) 0.034 (2) 0.0008 (19) −0.0038 (19) −0.011 (2)
C11 0.042 (3) 0.035 (3) 0.041 (3) −0.001 (2) −0.007 (2) −0.013 (2)
C6 0.032 (2) 0.032 (3) 0.042 (3) −0.002 (2) 0.003 (2) −0.017 (2)
C2 0.037 (2) 0.026 (2) 0.034 (2) 0.0014 (19) 0.0014 (19) −0.007 (2)
C1 0.036 (2) 0.021 (2) 0.029 (2) 0.0017 (18) −0.0018 (18) −0.0067 (18)
C4 0.051 (3) 0.038 (3) 0.046 (3) −0.021 (2) 0.016 (2) −0.019 (2)
C21 0.038 (3) 0.037 (3) 0.035 (3) 0.002 (2) −0.004 (2) −0.009 (2)
C17 0.035 (2) 0.032 (3) 0.054 (3) 0.001 (2) −0.002 (2) −0.020 (2)
C15 0.042 (3) 0.035 (3) 0.031 (2) −0.003 (2) −0.003 (2) 0.004 (2)
C3 0.055 (3) 0.030 (3) 0.030 (2) −0.007 (2) 0.008 (2) −0.005 (2)
C12 0.051 (3) 0.049 (3) 0.044 (3) −0.004 (3) −0.016 (2) −0.014 (3)
C7 0.049 (3) 0.030 (3) 0.040 (3) 0.013 (2) 0.005 (2) −0.002 (2)
C10 0.027 (2) 0.024 (2) 0.027 (2) 0.0038 (17) −0.0026 (17) −0.0049 (18)
C18 0.046 (3) 0.044 (3) 0.088 (5) −0.003 (3) 0.004 (3) −0.040 (3)
C20 0.045 (3) 0.061 (4) 0.051 (3) −0.001 (3) −0.008 (3) −0.028 (3)
C9 0.029 (2) 0.045 (3) 0.047 (3) 0.006 (2) 0.003 (2) −0.009 (3)
C13 0.065 (4) 0.048 (3) 0.035 (3) 0.002 (3) −0.013 (3) −0.006 (3)
C5 0.029 (2) 0.047 (3) 0.057 (3) −0.008 (2) 0.008 (2) −0.023 (3)
C19 0.052 (3) 0.069 (4) 0.065 (4) −0.016 (3) 0.015 (3) −0.045 (4)
C14 0.051 (3) 0.039 (3) 0.038 (3) −0.006 (3) −0.012 (2) 0.007 (2)
C8 0.075 (4) 0.056 (4) 0.062 (4) −0.024 (3) 0.032 (3) −0.024 (3)

Geometric parameters (Å, º)

Pd1—Cl2 2.3172 (14) C15—H15A 0.99
Pd1—Cl2i 2.3172 (14) C15—H15B 0.99
Pd1—P1 2.3760 (13) C3—H3 0.95
Pd1—P1i 2.3760 (13) C12—C13 1.502 (8)
P1—C10 1.859 (4) C12—H12A 0.99
P1—C16 1.862 (5) C12—H12B 0.99
P1—C1 1.868 (5) C7—H7A 0.98
C16—C17 1.532 (6) C7—H7B 0.98
C16—C21 1.541 (6) C7—H7C 0.98
C11—C10 1.524 (7) C10—H10 1
C11—C12 1.536 (7) C18—C19 1.520 (9)
C11—H11A 0.99 C18—H18A 0.99
C11—H11B 0.99 C18—H18B 0.99
C6—C5 1.382 (7) C20—C19 1.526 (8)
C6—C1 1.427 (6) C20—H20A 0.99
C6—C9 1.503 (7) C20—H20B 0.99
C2—C3 1.393 (6) C9—H9A 0.98
C2—C1 1.431 (6) C9—H9B 0.98
C2—C7 1.522 (6) C9—H9C 0.98
C1—H1 1 C13—C14 1.509 (8)
C4—C3 1.364 (7) C13—H13A 0.99
C4—C5 1.395 (8) C13—H13B 0.99
C4—C8 1.510 (7) C5—H5 0.95
C21—C20 1.522 (8) C19—H19A 0.99
C21—H21A 0.99 C19—H19B 0.99
C21—H21B 0.99 C14—H14A 0.99
C17—C18 1.526 (7) C14—H14B 0.99
C17—H17A 0.99 C8—H8A 0.98
C17—H17B 0.99 C8—H8B 0.98
C15—C14 1.534 (6) C8—H8C 0.98
C15—C10 1.540 (6)
Cl2—Pd1—Cl2i 180 C13—C12—H12B 109.2
Cl2—Pd1—P1 91.61 (6) C11—C12—H12B 109.2
Cl2i—Pd1—P1 88.39 (6) H12A—C12—H12B 107.9
Cl2—Pd1—P1i 88.39 (6) C2—C7—H7A 109.5
Cl2i—Pd1—P1i 91.61 (6) C2—C7—H7B 109.5
P1—Pd1—P1i 180 H7A—C7—H7B 109.5
C10—P1—C16 103.8 (2) C2—C7—H7C 109.5
C10—P1—C1 110.9 (2) H7A—C7—H7C 109.5
C16—P1—C1 104.3 (2) H7B—C7—H7C 109.5
C10—P1—Pd1 104.11 (15) C11—C10—C15 110.4 (4)
C16—P1—Pd1 114.10 (15) C11—C10—P1 112.8 (3)
C1—P1—Pd1 118.79 (15) C15—C10—P1 110.9 (3)
C17—C16—C21 109.7 (4) C11—C10—H10 107.5
C17—C16—P1 113.7 (3) C15—C10—H10 107.5
C21—C16—P1 112.9 (3) P1—C10—H10 107.5
C10—C11—C12 109.6 (4) C19—C18—C17 111.6 (5)
C10—C11—H11A 109.7 C19—C18—H18A 109.3
C12—C11—H11A 109.7 C17—C18—H18A 109.3
C10—C11—H11B 109.7 C19—C18—H18B 109.3
C12—C11—H11B 109.7 C17—C18—H18B 109.3
H11A—C11—H11B 108.2 H18A—C18—H18B 108
C5—C6—C1 119.4 (4) C21—C20—C19 111.7 (5)
C5—C6—C9 114.2 (4) C21—C20—H20A 109.3
C1—C6—C9 126.4 (4) C19—C20—H20A 109.3
C3—C2—C1 119.4 (4) C21—C20—H20B 109.3
C3—C2—C7 115.9 (4) C19—C20—H20B 109.3
C1—C2—C7 124.7 (4) H20A—C20—H20B 107.9
C6—C1—C2 117.3 (4) C6—C9—H9A 109.5
C6—C1—P1 125.7 (3) C6—C9—H9B 109.5
C2—C1—P1 116.9 (3) H9A—C9—H9B 109.5
C6—C1—H1 90.7 C6—C9—H9C 109.5
C2—C1—H1 90.7 H9A—C9—H9C 109.5
P1—C1—H1 90.7 H9B—C9—H9C 109.5
C3—C4—C5 116.5 (4) C12—C13—C14 110.5 (5)
C3—C4—C8 123.1 (5) C12—C13—H13A 109.6
C5—C4—C8 120.4 (5) C14—C13—H13A 109.6
C20—C21—C16 110.7 (4) C12—C13—H13B 109.6
C20—C21—H21A 109.5 C14—C13—H13B 109.6
C16—C21—H21A 109.5 H13A—C13—H13B 108.1
C20—C21—H21B 109.5 C6—C5—C4 123.7 (5)
C16—C21—H21B 109.5 C6—C5—H5 118.2
H21A—C21—H21B 108.1 C4—C5—H5 118.2
C18—C17—C16 110.3 (4) C18—C19—C20 109.5 (5)
C18—C17—H17A 109.6 C18—C19—H19A 109.8
C16—C17—H17A 109.6 C20—C19—H19A 109.8
C18—C17—H17B 109.6 C18—C19—H19B 109.8
C16—C17—H17B 109.6 C20—C19—H19B 109.8
H17A—C17—H17B 108.1 H19A—C19—H19B 108.2
C14—C15—C10 110.9 (4) C13—C14—C15 112.5 (5)
C14—C15—H15A 109.4 C13—C14—H14A 109.1
C10—C15—H15A 109.4 C15—C14—H14A 109.1
C14—C15—H15B 109.4 C13—C14—H14B 109.1
C10—C15—H15B 109.4 C15—C14—H14B 109.1
H15A—C15—H15B 108 H14A—C14—H14B 107.8
C4—C3—C2 123.7 (5) C4—C8—H8A 109.5
C4—C3—H3 118.1 C4—C8—H8B 109.5
C2—C3—H3 118.1 H8A—C8—H8B 109.5
C13—C12—C11 111.8 (5) C4—C8—H8C 109.5
C13—C12—H12A 109.2 H8A—C8—H8C 109.5
C11—C12—H12A 109.2 H8B—C8—H8C 109.5

Symmetry code: (i) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZJ2095).

References

  1. Bedford, R. B., Cazin, C. S. J. & Holder, D. (2004). Coord. Chem. Rev. 248, 2283–2321.
  2. Bruker (2007). APEX2 and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Burgoyne, A. R., Meijboom, R. & Ogutu, H. (2012). Acta Cryst E68, m404. [DOI] [PMC free article] [PubMed]
  4. Clarke, M. L., Orpen, A. G., Pringle, P. G. & Turley, E. (2003). Dalton Trans. pp. 4393–4394.
  5. Drew, D. & Doyle, J. R. (1990). Inorg. Synth. 28, 346–349.
  6. Grushin, V. V., Bensimon, C. & Alper, H. (1994). Inorg. Chem. 33, 4804–4806.
  7. Muller, A. & Meijboom, R. (2010a). Acta Cryst. E66, m1420. [DOI] [PMC free article] [PubMed]
  8. Muller, A. & Meijboom, R. (2010b). Acta Cryst. E66, m1463. [DOI] [PMC free article] [PubMed]
  9. Ogutu, H. & Meijboom, R. (2011). Acta Cryst. E67, m1662. [DOI] [PMC free article] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spessard, G. O. & Miessler, G. L. (1996). Organometallic Chemistry, pp. 131–135 Upper Saddle River, New Jersey: Prentice Hall.
  12. Vuoti, S., Autio, J., Laitila, M., Haukka, M. & Pursiainen, J. (2008). Eur. J. Inorg. Chem. pp. 397–407.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812040810/zj2095sup1.cif

e-68-m1330-sup1.cif (26KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812040810/zj2095Isup2.hkl

e-68-m1330-Isup2.hkl (241.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES