Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Oct 20;68(Pt 11):m1369–m1370. doi: 10.1107/S1600536812041955

catena-Poly[[tetra­aqua-μ-aqua-bis­(μ4-pyrimidine-2-carboxyl­ato)tetra­lithium] dichloride]

Wojciech Starosta a, Janusz Leciejewicz a,*
PMCID: PMC3515122  PMID: 23284349

Abstract

The asymmetric unit of the title compound, [Li4(C5H3N2O2)2(H2O)5]Cl2, contains two LiI cations, one with a distorted trigonal–bipyramidal and the other with a distorted tetra­hedral coordination geometry. Two symmetry-related asymmetric units constitute a building block of the structure, in which both ligand carboxyl­ate O atoms are bidentate and bridge the metal ions, forming a divalent cation. Charge balance is maintained by two chloride anions. The building blocks, bridged by LiI cations, form cationic ribbons with chloride anions in the space between them. The ribbons propagate in [010] and are held together by a network of weak O—H⋯O hydrogen bonds which operate in the space between adjacent ribbons.

Related literature  

For the structure of a Li complex with pyrimidine-2-carboxyl­ate and nitrate ligands, see: Starosta & Leciejewicz (2011). The structure of a LiI complex with pyrimidine-4-carboxyl­ate and water ligands was reported recently by Starosta & Leciejewicz (2012).graphic file with name e-68-m1369-scheme1.jpg

Experimental  

Crystal data  

  • [Li4(C5H3N2O2)2(H2O)5]Cl2

  • M r = 434.93

  • Monoclinic, Inline graphic

  • a = 22.084 (4) Å

  • b = 8.0773 (16) Å

  • c = 10.814 (2) Å

  • β = 94.08 (3)°

  • V = 1924.1 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 293 K

  • 0.37 × 0.24 × 0.18 mm

Data collection  

  • Kuma KM4 four-circle diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008) T min = 0.917, T max = 0.935

  • 2964 measured reflections

  • 2819 independent reflections

  • 1781 reflections with I > 2σ(I)

  • R int = 0.029

  • 3 standard reflections every 200 reflections intensity decay: 2.3%

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.147

  • S = 1.02

  • 2819 reflections

  • 152 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: KM-4 Software (Kuma, 1996); cell refinement: KM-4 Software; data reduction: DATAPROC (Kuma, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812041955/qm2084sup1.cif

e-68-m1369-sup1.cif (16.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812041955/qm2084Isup2.hkl

e-68-m1369-Isup2.hkl (138.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Li1—O1 2.069 (3)
Li1—N1 2.175 (4)
Li1—O3 1.987 (4)
Li1—O2i 2.029 (4)
Li1—N3i 2.221 (4)
Li2—O21 2.140 (6)
Li2—O22 1.915 (4)
Li2—O2ii 1.968 (4)
Li2—O1 1.993 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O22—H222⋯O3 0.89 (2) 2.16 (3) 2.841 (3) 133 (3)
O22—H221⋯Cl1iii 0.87 (2) 2.36 (2) 3.212 (2) 167 (3)
O3—H31⋯Cl1 0.83 (4) 2.35 (4) 3.1381 (19) 158 (3)
O3—H32⋯Cl1iv 0.86 (4) 2.29 (4) 3.1429 (19) 168 (4)
O21—H211⋯Cl1v 0.84 (3) 2.45 (3) 3.288 (2) 175 (3)

Symmetry codes: (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

supplementary crystallographic information

Comment

The asymmetric cell of the title compound contains two symmetry independent LiI ions, one deprotonated pyramidine-2-carboxylatato ligand molecule, three symmetry independent water molecules which are coordinated to metal ions and one chloride anion. The latter maintains charge balance in the cell. Two symmetry related cells form a molecular moiety which can be visualized as a building unit of the structure (Fig. 1).The ligand bridges Li ions in a µ4 mode using both its carboxylate O atoms which act as bidentate. Ligand bonding groups N1,O1 and N3,O2 chelate Li1 and Liii ions; the O1 and O2 atoms are also bonded to Li2 and Li2i ions, respectively. Since the Li1 and Li1ii ions are also coordinated by bonding groups from adjacent symmetry related ligands, a –Li1ii—O2—O1—Li1—O2iiiO1iii—Li1iii– bridging pathway is formed. Apart from two N,O bonding groups, Li1 coordination is completed by an aqua O3 atom. On the other hand, pairs of adjacent symmetry related Li2 and Li2i ions are bridged by an aqua O21 atom while the other coordinated to them aqua O22 and O22i atoms are not bridging. Symmetry code: i -x, y, -z + 1/2; iix, -y + 2, z - 1/2; iiix, -y + 2, z + 1/2. Adjacent moieties linked along the Li1 bridging pathway form a cationic ribbon propagating in the unit cell b direction (Fig. 2). Chloride anions are located in the space between adjacent ribbons. Fig. 1 shows, that a ribbon can be visualized as built of centro-symmetric molecular clusters in which Li ions form a tetrameric entities additionally connected by Li2—O21—Li2i bridges. The Li1 ion exhibits a distorted trigonal bipyramidal coordination environment in which O1, O3 and N3iii atoms form an equatorial plane with a Li1 ion 0.0619 (2) Å out of it; N1 and O2iii atoms are at apical positions. The coordination of the Li2 ion is strongly distorted tetrahedral. The Li—O and Li—N bond distances (Table 1) are close to those reported in the structures of a Li complex with the title and nitrate ligands (Starosta & Leciejewicz, 2011) and pyrimidine-4-carboxylate and water ligands (Starosta & Leciejewicz, 2012). The pyrimidine ring is planar with r.m.s. of 0.0071 (1) Å; the C7/O1/O2 makes with it a dihedral angle of 5.8 (1)°. Weak hydrogen bonds in which water O atoms are as donors and chloride anions act as acceptors operate between adjacent ribbons (Table 2).

Experimental

1 mmol of methyl pyrimidine-2-carboxylate and ca2 mmol s of lithium hydroxide dissolved in 50 ml of hot, doubly distilled water were boiled under reflux with stirring for twenty hours. After evaporation to dryness at room temperature the polycrystalline material was dissolved in 50 ml of water. The solution was titrated with 1 N HCl until the pH reached 6.0 and then stirred for 3 h at ca 320 K. Left to crystallize at room temperature, colourless single-crystal blocks deposited after a week. They were washed with cold methanol and dried in the air.

Refinement

Hydrogen atoms belonging to water molecules were located in a difference map and refined isotropically, while three H atoms attached to pyrimidine C atoms were located at calculated positions and treated as riding on the parent atoms with C—H=0.93 Å and Uiso(H)=1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

A fragment of a cationic ribbon of the title compound with atom labelling scheme and 50% probability displacement ellipsoids. Symmetry code: i -x, y, -z + 1/2; iix, -y + 2, z - 1/2; iiix, -y + 2, z + 1/2; iv -x, -y + 2, z + 1.

Fig. 2.

Fig. 2.

The alignment of cationic ribbons and chloride anions in the structure of the title compound viewed along the unit cell b direction.

Crystal data

[Li4(C5H3N2O2)2(H2O)5]Cl2 F(000) = 888
Mr = 434.93 Dx = 1.501 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 25 reflections
a = 22.084 (4) Å θ = 6–15°
b = 8.0773 (16) Å µ = 0.39 mm1
c = 10.814 (2) Å T = 293 K
β = 94.08 (3)° Block, colourless
V = 1924.1 (7) Å3 0.37 × 0.24 × 0.18 mm
Z = 4

Data collection

Kuma KM4 four-circle diffractometer 1781 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.029
Graphite monochromator θmax = 30.1°, θmin = 1.9°
profile data from ω/2θ scans h = −31→31
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008) k = −11→0
Tmin = 0.917, Tmax = 0.935 l = 0→15
2964 measured reflections 3 standard reflections every 200 reflections
2819 independent reflections intensity decay: 2.3%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0879P)2 + 1.2478P] where P = (Fo2 + 2Fc2)/3
2819 reflections (Δ/σ)max = 0.004
152 parameters Δρmax = 0.51 e Å3
4 restraints Δρmin = −0.36 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.08301 (6) 0.92604 (19) 0.37614 (11) 0.0321 (3)
O2 0.08768 (6) 0.96441 (19) 0.17202 (11) 0.0319 (3)
N3 0.20103 (7) 1.0854 (2) 0.20733 (13) 0.0277 (3)
N1 0.19897 (7) 1.0170 (2) 0.42115 (13) 0.0277 (3)
C6 0.25599 (9) 1.0720 (3) 0.43984 (17) 0.0326 (4)
H6 0.2752 1.0657 0.5191 0.039*
C2 0.17410 (7) 1.0274 (2) 0.30494 (14) 0.0232 (3)
C4 0.25768 (9) 1.1411 (3) 0.22901 (18) 0.0332 (4)
H4 0.2778 1.1836 0.1634 0.040*
C5 0.28729 (9) 1.1378 (3) 0.3457 (2) 0.0353 (4)
H5 0.3266 1.1781 0.3601 0.042*
Li1 0.13426 (15) 0.9162 (5) 0.5437 (3) 0.0323 (7)
O3 0.11355 (9) 0.6795 (2) 0.56747 (16) 0.0469 (4)
C7 0.10916 (8) 0.9673 (2) 0.28238 (14) 0.0239 (3)
O21 0.0000 0.6868 (4) 0.2500 0.0527 (6)
Li2 −0.00573 (17) 0.8841 (8) 0.3807 (4) 0.0590 (13)
Cl1 0.10829 (3) 0.57231 (8) 0.84542 (5) 0.04391 (17)
H211 −0.0286 (13) 0.622 (4) 0.230 (3) 0.064 (10)*
H32 0.1130 (18) 0.599 (5) 0.515 (4) 0.086 (12)*
H31 0.1170 (14) 0.627 (4) 0.634 (3) 0.065 (9)*
O22 −0.00669 (8) 0.8066 (3) 0.54795 (18) 0.0618 (6)
H221 −0.0386 (10) 0.754 (4) 0.570 (3) 0.075 (10)*
H222 0.0166 (14) 0.717 (4) 0.555 (3) 0.120 (17)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0302 (6) 0.0478 (8) 0.0185 (6) −0.0032 (6) 0.0031 (5) 0.0039 (5)
O2 0.0313 (6) 0.0472 (8) 0.0164 (5) −0.0051 (6) −0.0040 (4) 0.0036 (5)
N3 0.0316 (7) 0.0335 (8) 0.0181 (6) −0.0022 (6) 0.0028 (5) 0.0009 (6)
N1 0.0312 (7) 0.0352 (8) 0.0165 (6) −0.0006 (6) −0.0012 (5) 0.0012 (6)
C6 0.0330 (8) 0.0390 (10) 0.0245 (8) −0.0006 (8) −0.0062 (6) −0.0016 (7)
C2 0.0291 (8) 0.0258 (8) 0.0148 (6) 0.0024 (6) 0.0012 (5) 0.0000 (6)
C4 0.0354 (9) 0.0361 (10) 0.0289 (9) −0.0051 (8) 0.0075 (7) 0.0008 (7)
C5 0.0289 (9) 0.0392 (10) 0.0373 (10) −0.0036 (8) −0.0006 (7) −0.0014 (8)
Li1 0.0376 (16) 0.0420 (18) 0.0173 (13) 0.0004 (14) 0.0020 (11) −0.0006 (12)
O3 0.0754 (12) 0.0358 (8) 0.0277 (7) 0.0017 (8) −0.0090 (7) 0.0005 (7)
C7 0.0258 (7) 0.0285 (8) 0.0171 (7) 0.0017 (6) 0.0006 (5) 0.0009 (6)
O21 0.0337 (11) 0.0675 (17) 0.0551 (15) 0.000 −0.0086 (10) 0.000
Li2 0.0301 (17) 0.116 (4) 0.0305 (18) 0.009 (2) 0.0030 (14) 0.018 (2)
Cl1 0.0420 (3) 0.0553 (3) 0.0345 (3) −0.0001 (2) 0.00346 (19) 0.0087 (2)
O22 0.0349 (8) 0.0967 (16) 0.0550 (11) 0.0101 (10) 0.0123 (7) 0.0338 (11)

Geometric parameters (Å, º)

O1—C7 1.247 (2) Li1—N3iii 2.221 (4)
Li1—O1 2.069 (3) Li1—Li2iv 3.414 (6)
O2—C7 1.2528 (19) O3—H32 0.86 (4)
O2—Li2i 1.968 (4) O3—H31 0.83 (4)
O2—Li1ii 2.029 (4) Li2—O21 2.140 (6)
N3—C2 1.333 (2) O21—Li2i 2.140 (6)
N3—C4 1.335 (2) O21—H211 0.84 (3)
N3—Li1ii 2.221 (4) Li2—O22 1.915 (4)
N1—C6 1.337 (2) Li2—O2i 1.968 (4)
N1—C2 1.338 (2) Li2—O1 1.993 (4)
Li1—N1 2.175 (4) Li2—O22iv 2.623 (7)
C6—C5 1.377 (3) Li2—Li2i 2.856 (8)
C6—H6 0.9300 Li2—Li2iv 3.183 (11)
C2—C7 1.517 (2) Li2—Li1iv 3.414 (6)
C4—C5 1.379 (3) Li2—H222 2.343 (18)
C4—H4 0.9300 O22—Li2iv 2.623 (7)
C5—H5 0.9300 O22—H221 0.868 (18)
Li1—O3 1.987 (4) O22—H222 0.891 (18)
Li1—O2iii 2.029 (4)
C7—O1—Li2 125.36 (16) Li2—O21—Li2i 83.7 (3)
C7—O1—Li1 117.79 (15) Li2—O21—H211 124 (2)
Li2—O1—Li1 116.70 (16) Li2i—O21—H211 112 (2)
C7—O2—Li2i 124.07 (17) O22—Li2—O2i 108.02 (19)
C7—O2—Li1ii 117.82 (15) O22—Li2—O1 98.98 (19)
Li2i—O2—Li1ii 117.32 (18) O2i—Li2—O1 145.3 (3)
C2—N3—C4 116.42 (15) O22—Li2—O21 112.7 (3)
C2—N3—Li1ii 108.69 (14) O2i—Li2—O21 98.6 (2)
C4—N3—Li1ii 134.65 (15) O1—Li2—O21 90.32 (18)
C6—N1—C2 116.14 (15) O22—Li2—O22iv 92.4 (2)
C6—N1—Li1 133.22 (14) O2i—Li2—O22iv 81.1 (2)
C2—N1—Li1 110.62 (14) O1—Li2—O22iv 76.29 (19)
N1—C6—C5 122.22 (17) O21—Li2—O22iv 153.3 (2)
N1—C6—H6 118.9 O22—Li2—Li2i 160.4 (2)
C5—C6—H6 118.9 O2i—Li2—Li2i 81.81 (19)
N3—C2—N1 126.11 (16) O1—Li2—Li2i 79.56 (18)
N3—C2—C7 117.06 (14) O21—Li2—Li2i 48.13 (14)
N1—C2—C7 116.82 (15) O22iv—Li2—Li2i 106.04 (10)
N3—C4—C5 122.10 (17) O22—Li2—Li2iv 55.42 (15)
N3—C4—H4 119.0 O2i—Li2—Li2iv 93.4 (2)
C5—C4—H4 119.0 O1—Li2—Li2iv 84.2 (2)
C6—C5—C4 116.98 (18) O21—Li2—Li2iv 165.6 (3)
C6—C5—H5 121.5 O22iv—Li2—Li2iv 36.95 (15)
C4—C5—H5 121.5 Li2i—Li2—Li2iv 142.6 (2)
O3—Li1—O2iii 103.68 (16) O22—Li2—Li1iv 82.13 (16)
O3—Li1—O1 91.92 (15) O2i—Li2—Li1iv 31.87 (10)
O2iii—Li1—O1 107.96 (16) O1—Li2—Li1iv 139.6 (3)
O3—Li1—N1 127.32 (18) O21—Li2—Li1iv 126.81 (17)
O2iii—Li1—N1 128.74 (19) O22iv—Li2—Li1iv 63.32 (13)
O1—Li1—N1 78.11 (12) Li2i—Li2—Li1iv 111.75 (17)
O3—Li1—N3iii 92.14 (15) Li2iv—Li2—Li1iv 63.10 (15)
O2iii—Li1—N3iii 78.36 (12) O22—Li2—H222 21.2 (6)
O1—Li1—N3iii 171.42 (18) O2i—Li2—H222 124.0 (7)
N1—Li1—N3iii 93.42 (14) O1—Li2—H222 88.1 (8)
O3—Li1—Li2iv 102.75 (17) O21—Li2—H222 94.7 (9)
O2iii—Li1—Li2iv 30.81 (10) O22iv—Li2—H222 107.6 (10)
O1—Li1—Li2iv 77.24 (13) Li2i—Li2—H222 140.1 (7)
N1—Li1—Li2iv 124.23 (17) Li2iv—Li2—H222 71.8 (9)
N3iii—Li1—Li2iv 109.16 (14) Li1iv—Li2—H222 102.2 (6)
Li1—O3—H32 129 (3) Li2—O22—Li2iv 87.6 (2)
Li1—O3—H31 126 (2) Li2—O22—H221 119 (2)
H32—O3—H31 101 (3) Li2iv—O22—H221 117 (2)
O1—C7—O2 127.12 (16) Li2—O22—H222 107.6 (17)
O1—C7—C2 116.22 (14) Li2iv—O22—H222 135 (3)
O2—C7—C2 116.65 (15) H221—O22—H222 93 (2)

Symmetry codes: (i) −x, y, −z+1/2; (ii) x, −y+2, z−1/2; (iii) x, −y+2, z+1/2; (iv) −x, −y+2, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O22—H222···O3 0.89 (2) 2.16 (3) 2.841 (3) 133 (3)
O22—H221···Cl1v 0.87 (2) 2.36 (2) 3.212 (2) 167 (3)
O3—H31···Cl1 0.83 (4) 2.35 (4) 3.1381 (19) 158 (3)
O3—H32···Cl1vi 0.86 (4) 2.29 (4) 3.1429 (19) 168 (4)
O21—H211···Cl1vii 0.84 (3) 2.45 (3) 3.288 (2) 175 (3)

Symmetry codes: (v) −x, y, −z+3/2; (vi) x, −y+1, z−1/2; (vii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: QM2084).

References

  1. Kuma (1996). KM-4 Software Kuma Diffraction Ltd. Wrocław, Poland.
  2. Kuma (2001). DATAPROC Kuma Diffraction Ltd. Wrocław, Poland.
  3. Oxford Diffraction (2008). CrysAlis RED Oxford Diffraction Ltd., Yarnton, England.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Starosta, W. & Leciejewicz, J. (2011). Acta Cryst. E67, m818. [DOI] [PMC free article] [PubMed]
  6. Starosta, W. & Leciejewicz, J. (2012). Acta Cryst. E68, m1065–m1066. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812041955/qm2084sup1.cif

e-68-m1369-sup1.cif (16.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812041955/qm2084Isup2.hkl

e-68-m1369-Isup2.hkl (138.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES