Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Oct 20;68(Pt 11):m1373. doi: 10.1107/S1600536812042420

Bis[4-(4-bromophenylimino-κN)pent-2-en-2-olato-κO]copper(II)

Paul S E Bungu a,*, Marietjie Schutte a, G Steyl a
PMCID: PMC3515125  PMID: 23284352

Abstract

In the title compound, [Cu(C11H11BrNO)2], the CuII atom is in a distorted square-planar geometry, with the two bidentate ketimine ligands positioned in a trans geometry. Two inter­molecular C—H⋯O hydrogen bond inter­actions are present which link the mol­ecules in a zigzag manner along the a axis. The mol­ecules pack in layers along the diagonal of the bc plane.

Related literature  

For similar structures, see: Bourget-Merle et al. (2002); Bryndin et al. (2008) Hsu et al. (2004, 2007) John et al. (2007); Stender et al. (2001). graphic file with name e-68-m1373-scheme1.jpg

Experimental  

Crystal data  

  • [Cu(C11H11BrNO)2]

  • M r = 569.77

  • Monoclinic, Inline graphic

  • a = 12.493 (3) Å

  • b = 11.559 (4) Å

  • c = 15.415 (4) Å

  • β = 92.306 (14)°

  • V = 2224.2 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.60 mm−1

  • T = 100 K

  • 0.64 × 0.25 × 0.15 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.262, T max = 0.502

  • 13700 measured reflections

  • 5558 independent reflections

  • 4291 reflections with I > 2σ(I)

  • R int = 0.034

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.082

  • S = 1.00

  • 5558 reflections

  • 266 parameters

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.89 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812042420/gg2104sup1.cif

e-68-m1373-sup1.cif (19.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812042420/gg2104Isup2.hkl

e-68-m1373-Isup2.hkl (265.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

N1—Cu1 1.958 (2)
N2—Cu1 1.948 (2)
O1—Cu1 1.9110 (17)
O2—Cu1 1.9085 (19)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C115—H115⋯O1i 0.95 2.47 3.370 (3) 157
C215—H215⋯O2ii 0.95 2.54 3.378 (3) 147

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We would like to thank the crystallographer, Ricky Kotze, for the data collection, and the University of the Free State, the Chemistry Department, the NRF, Sasol Ltd and Inkaba YeAfrica for funding.

supplementary crystallographic information

Comment

Beta-diketimine ligands are a versatile class of molecules that display an impressive range of diverse applications in coordination chemistry (Bourget-Merle et al. 2002). The success of these ligands (Stender et al. 2001) is presumably due to the scope for suitable tuning of the steric and electronic properties and due to its easy synthetic accessibility to coordinate to early transition metals (Hsu et al. 2004). Here we report the crystal structure of the Cu(II) complex containing a ketiminate ligand, [OC(Me)CHC(Me)NH (Ar)] where Ar = 4-bromophenyl. Structural analysis shows that the title compound crystallized as black cuboidal crystals in the monoclinic space group, P21/c, with one molecule in the asymmetric unit and with approximately non-crystallographic C2 symmetry. The complex shows a four coordinate environment around the copper atom where two ketimine ligands act as bidentate N,O-chelators and lie in the trans conformation to create two six-membered chelate rings (Cu—O—C—C—C—N). Similar structures are reported in literature and the bond distances and angles of this structure compare well to those in literature (Bryndin et al. 2008, Hsu et al. 2007, John et al.2007).

In this structure, the dihedral angles of the two coordinate planes, O1—Cu1—N2 and O2—Cu1—N1, are 24.1 (2)° and 21.1 (2)° respectively. Also, the Cu—O and Cu—N bond distances are all marginally unequal, hence suggesting distorted square-planer geometry around the Cu(II) center. In Figure 1, the Cu1—O1 and Cu1—O2 bond lengths are 1.911 (2) Å and 1.909 (2) Å while the Cu1—N1 and Cu1—N2 bond lengths were 1.958 (2) Å and 1.948 (2) Å respectively. The presence of the 4-bromophenyl group has caused a slight decrease in the Cu—N bond distances when compared to the respective analogues of copper ketimine complexes by Bryndin et al. 2008 (Cu—N = 1.960 (2) Å and 1.965 (2) Å) and Hsu et al. 2007 (Cu—N = 1.974 (1) Å and 1.974 (1) Å). Owing to the presence of the distortion, the four N—Cu—O bond angles are marginally different from the ideal value of a square planer geometry of 90° and are reported as 94.70 (8)° (N1—Cu1—O1) and 94.80 (8)° (N2—Cu1—O2). The diagonal angles, N1—Cu1—N2 and O1—Cu1—O2, are reported as 148.20 (9)° and 145.59 (8)° which also differ substantially from the ideal angle of 180° and are comparable to results reported by Bryndin et al. 2008 and Hsu et al. 2007.These differences were made apparent when comparing the results to the structures by John et al. 2007, where phenoxy-ketimine ligands were used as bidentate ligands for both Cu(II) and Ni(II), in which almost a perfect square planar geometry was obeserved. The stabilization is dominated by two intermolecular C—H···O hydrogen bonds (C115—H115···O1) 2.47 Å and C215—H215···O1 = 2.54 Å) (Table 2). π–π stacking is observed between neighbouring molecules with a centroid-to-hydrogen bond distance of 3.7236 (9) Å. Five pi-interactions (centroid-to-hydrogen) are observed with a distance varying between 3.527 (1) Å and 3.746 (1) Å. The hydrogen and pi-interactions as well as the pi–pi stacking is illustrated in Figure 2. The molecules pack in alternating layers along the c axis possibly due to the hydrogen- and π interactions.

Experimental

Copper nitrate Cu(NO3)2 (100 mg, 0.044 mmol) was dissolved in MeOH and refluxed with 2 equivalent of C11H11BrONH (237 mg, 0.94 mmol) for 2 h. The product was filtered at ambient temperature and dried in air. Black crystals were grown overnight from chloroform/ether (1:1, 10 ml) mixture. (yield: 169 mg, 0.29 mmol and 67%).

Refinement

All aromatic and methine H atoms were positioned geometrically and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) of the parent atom with the C—H distance of 0.95 Å. The methyl H atoms were placed in geometrically idealized positions and contrained to ride the parent atom with Uiso(H)= 1.5Ueq(C) and at a distance of) 0.98 Å.

Figures

Fig. 1.

Fig. 1.

Representation of the title compound, showing the numbering scheme and displacement ellipsoids (50% probability).

Fig. 2.

Fig. 2.

Observed hydrogen interactions (green dashed line), π-π stacking (yellow dashed lines) and π-interactions(red dashed lines) in the crystal structure (hydrogen atoms omitted for clarity).

Crystal data

[Cu(C11H11BrNO)2] F(000) = 1132
Mr = 569.77 Dx = 1.702 Mg m3Dm = 1.702 Mg m3Dm measured by not measured
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4022 reflections
a = 12.493 (3) Å θ = 2.6–28.3°
b = 11.559 (4) Å µ = 4.60 mm1
c = 15.415 (4) Å T = 100 K
β = 92.306 (14)° Cuboid, black
V = 2224.2 (11) Å3 0.64 × 0.25 × 0.15 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 4291 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.034
φ and ω scans θmax = 28.4°, θmin = 3.5°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −16→16
Tmin = 0.262, Tmax = 0.502 k = −15→15
13700 measured reflections l = −20→20
5558 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0411P)2] where P = (Fo2 + 2Fc2)/3
5558 reflections (Δ/σ)max = 0.001
266 parameters Δρmax = 0.65 e Å3
0 restraints Δρmin = −0.89 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C11 0.8322 (2) 0.8020 (3) 0.36239 (16) 0.0212 (6)
H11A 0.9055 0.813 0.3859 0.032*
H11B 0.8011 0.8772 0.3462 0.032*
H11C 0.8331 0.7522 0.311 0.032*
C12 0.76552 (18) 0.7460 (2) 0.43032 (15) 0.0149 (5)
C13 0.66749 (18) 0.7913 (2) 0.44918 (15) 0.0175 (5)
H13 0.6461 0.8593 0.4185 0.021*
C14 0.59432 (18) 0.7476 (2) 0.50978 (16) 0.0167 (5)
C15 0.48851 (19) 0.8093 (3) 0.51301 (18) 0.0243 (6)
H15A 0.4366 0.7727 0.4723 0.036*
H15B 0.4978 0.8906 0.4969 0.036*
H15C 0.4622 0.8048 0.572 0.036*
C21 0.6951 (2) 0.2875 (3) 0.71567 (18) 0.0256 (6)
H21A 0.6228 0.3133 0.7287 0.038*
H21B 0.7318 0.259 0.7689 0.038*
H21C 0.6905 0.2252 0.6725 0.038*
C22 0.7570 (2) 0.3872 (2) 0.68015 (17) 0.0179 (5)
C23 0.8587 (2) 0.4111 (2) 0.71350 (17) 0.0202 (6)
H23 0.8847 0.3643 0.7604 0.024*
C24 0.92856 (19) 0.4990 (2) 0.68462 (16) 0.0177 (5)
C25 1.0380 (2) 0.5049 (3) 0.73005 (18) 0.0294 (7)
H25A 1.0898 0.463 0.6959 0.044*
H25B 1.0349 0.4697 0.7877 0.044*
H25C 1.0601 0.586 0.736 0.044*
C111 0.54017 (18) 0.6141 (2) 0.61825 (15) 0.0129 (5)
C112 0.56717 (19) 0.6087 (2) 0.70644 (16) 0.0174 (5)
H112 0.6316 0.6437 0.7283 0.021*
C113 0.50063 (19) 0.5526 (2) 0.76277 (16) 0.0177 (5)
H113 0.5191 0.5486 0.8231 0.021*
C114 0.40750 (18) 0.5026 (2) 0.73001 (15) 0.0150 (5)
C115 0.37692 (18) 0.5094 (2) 0.64311 (15) 0.0151 (5)
H115 0.3113 0.4764 0.622 0.018*
C116 0.44426 (18) 0.5657 (2) 0.58699 (15) 0.0149 (5)
H116 0.4246 0.571 0.5269 0.018*
C211 0.97726 (17) 0.6546 (2) 0.59351 (14) 0.0127 (5)
C212 0.95377 (18) 0.7715 (2) 0.59664 (15) 0.0150 (5)
H212 0.889 0.7959 0.6213 0.018*
C213 1.02240 (18) 0.8536 (2) 0.56474 (15) 0.0157 (5)
H213 1.0056 0.9337 0.5672 0.019*
C214 1.11628 (18) 0.8159 (2) 0.52909 (15) 0.0168 (5)
C215 1.14142 (19) 0.6996 (2) 0.52416 (16) 0.0187 (6)
H215 1.2062 0.6756 0.4994 0.022*
C216 1.07162 (18) 0.6190 (2) 0.55558 (16) 0.0159 (5)
H216 1.0877 0.5389 0.5515 0.019*
N1 0.61776 (14) 0.65887 (19) 0.56113 (12) 0.0133 (4)
N2 0.90082 (15) 0.57349 (18) 0.62280 (13) 0.0130 (4)
O1 0.80748 (12) 0.65429 (16) 0.46501 (10) 0.0152 (4)
O2 0.70804 (13) 0.44317 (15) 0.61821 (11) 0.0166 (4)
Cu1 0.75794 (2) 0.58295 (3) 0.567779 (18) 0.01230 (8)
Br1 0.32073 (2) 0.41819 (2) 0.806750 (16) 0.02103 (8)
Br2 1.21072 (2) 0.92786 (3) 0.48364 (2) 0.03221 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C11 0.0233 (13) 0.0226 (16) 0.0175 (12) −0.0046 (11) −0.0012 (10) 0.0066 (11)
C12 0.0180 (11) 0.0132 (13) 0.0130 (11) −0.0037 (10) −0.0052 (9) 0.0005 (10)
C13 0.0199 (12) 0.0158 (14) 0.0164 (12) −0.0007 (10) −0.0039 (10) 0.0069 (11)
C14 0.0161 (11) 0.0154 (14) 0.0183 (12) −0.0011 (10) −0.0050 (9) −0.0016 (11)
C15 0.0200 (13) 0.0201 (16) 0.0324 (15) 0.0052 (11) −0.0024 (11) 0.0068 (13)
C21 0.0281 (14) 0.0198 (16) 0.0287 (15) −0.0056 (12) −0.0016 (12) 0.0103 (13)
C22 0.0205 (12) 0.0140 (14) 0.0195 (13) 0.0000 (10) 0.0036 (10) 0.0017 (11)
C23 0.0240 (13) 0.0172 (14) 0.0190 (13) 0.0008 (11) −0.0038 (10) 0.0098 (11)
C24 0.0189 (12) 0.0185 (15) 0.0156 (12) 0.0012 (11) −0.0008 (9) 0.0026 (11)
C25 0.0215 (13) 0.037 (2) 0.0291 (15) −0.0055 (13) −0.0112 (11) 0.0184 (14)
C111 0.0132 (11) 0.0131 (13) 0.0123 (11) 0.0010 (9) −0.0011 (9) 0.0007 (10)
C112 0.0162 (12) 0.0184 (14) 0.0171 (12) −0.0017 (10) −0.0040 (9) −0.0022 (11)
C113 0.0192 (12) 0.0214 (15) 0.0121 (12) −0.0018 (11) −0.0024 (9) −0.0025 (11)
C114 0.0136 (11) 0.0154 (14) 0.0164 (12) 0.0025 (10) 0.0047 (9) −0.0021 (10)
C115 0.0120 (10) 0.0166 (14) 0.0166 (12) −0.0004 (10) −0.0010 (9) −0.0038 (11)
C116 0.0142 (11) 0.0167 (14) 0.0136 (11) 0.0012 (10) −0.0014 (9) −0.0026 (10)
C211 0.0107 (10) 0.0167 (14) 0.0103 (11) −0.0009 (10) −0.0032 (8) 0.0000 (10)
C212 0.0139 (11) 0.0170 (14) 0.0140 (11) 0.0015 (10) 0.0010 (9) −0.0030 (10)
C213 0.0176 (11) 0.0121 (13) 0.0172 (12) 0.0015 (10) −0.0013 (9) −0.0012 (10)
C214 0.0134 (11) 0.0190 (14) 0.0182 (12) −0.0029 (10) 0.0011 (9) 0.0039 (11)
C215 0.0144 (11) 0.0210 (15) 0.0210 (13) 0.0015 (10) 0.0049 (10) 0.0030 (11)
C216 0.0167 (12) 0.0120 (13) 0.0188 (12) 0.0023 (10) −0.0006 (10) −0.0009 (10)
N1 0.0118 (9) 0.0144 (11) 0.0133 (10) −0.0015 (8) −0.0032 (7) 0.0014 (9)
N2 0.0117 (9) 0.0126 (11) 0.0147 (10) −0.0002 (8) −0.0004 (7) 0.0017 (9)
O1 0.0176 (8) 0.0154 (10) 0.0123 (8) 0.0008 (7) −0.0018 (6) 0.0021 (7)
O2 0.0172 (8) 0.0118 (10) 0.0210 (9) −0.0019 (7) 0.0013 (7) 0.0044 (7)
Cu1 0.01157 (14) 0.01196 (17) 0.01323 (15) −0.00026 (11) −0.00136 (11) 0.00234 (12)
Br1 0.02047 (14) 0.02328 (16) 0.01966 (14) −0.00309 (11) 0.00480 (10) 0.00181 (11)
Br2 0.02029 (14) 0.02105 (17) 0.0562 (2) −0.00094 (12) 0.01245 (13) 0.01269 (15)

Geometric parameters (Å, º)

C11—C12 1.509 (3) C111—C116 1.391 (3)
C11—H11A 0.98 C111—N1 1.432 (3)
C11—H11B 0.98 C112—C113 1.387 (4)
C11—H11C 0.98 C112—H112 0.95
C12—O1 1.289 (3) C113—C114 1.376 (3)
C12—C13 1.374 (3) C113—H113 0.95
C13—C14 1.426 (3) C114—C115 1.380 (3)
C13—H13 0.95 C114—Br1 1.905 (2)
C14—N1 1.321 (3) C115—C116 1.392 (3)
C14—C15 1.505 (3) C115—H115 0.95
C15—H15A 0.98 C116—H116 0.95
C15—H15B 0.98 C211—C212 1.385 (4)
C15—H15C 0.98 C211—C216 1.398 (3)
C21—C22 1.503 (4) C211—N2 1.424 (3)
C21—H21A 0.98 C212—C213 1.382 (3)
C21—H21B 0.98 C212—H212 0.95
C21—H21C 0.98 C213—C214 1.385 (3)
C22—O2 1.287 (3) C213—H213 0.95
C22—C23 1.380 (3) C214—C215 1.383 (4)
C23—C24 1.422 (4) C214—Br2 1.904 (3)
C23—H23 0.95 C215—C216 1.377 (4)
C24—N2 1.320 (3) C215—H215 0.95
C24—C25 1.512 (3) C216—H216 0.95
C25—H25A 0.98 N1—Cu1 1.958 (2)
C25—H25B 0.98 N2—Cu1 1.948 (2)
C25—H25C 0.98 O1—Cu1 1.9110 (17)
C111—C112 1.389 (3) O2—Cu1 1.9085 (19)
C12—C11—H11A 109.5 C113—C112—H112 119.8
C12—C11—H11B 109.5 C111—C112—H112 119.8
H11A—C11—H11B 109.5 C114—C113—C112 119.1 (2)
C12—C11—H11C 109.5 C114—C113—H113 120.5
H11A—C11—H11C 109.5 C112—C113—H113 120.5
H11B—C11—H11C 109.5 C113—C114—C115 121.9 (2)
O1—C12—C13 125.2 (2) C113—C114—Br1 118.74 (18)
O1—C12—C11 114.5 (2) C115—C114—Br1 119.31 (18)
C13—C12—C11 120.3 (2) C114—C115—C116 118.6 (2)
C12—C13—C14 127.2 (2) C114—C115—H115 120.7
C12—C13—H13 116.4 C116—C115—H115 120.7
C14—C13—H13 116.4 C111—C116—C115 120.4 (2)
N1—C14—C13 122.4 (2) C111—C116—H116 119.8
N1—C14—C15 121.5 (2) C115—C116—H116 119.8
C13—C14—C15 116.2 (2) C212—C211—C216 119.0 (2)
C14—C15—H15A 109.5 C212—C211—N2 119.1 (2)
C14—C15—H15B 109.5 C216—C211—N2 121.8 (2)
H15A—C15—H15B 109.5 C213—C212—C211 121.5 (2)
C14—C15—H15C 109.5 C213—C212—H212 119.3
H15A—C15—H15C 109.5 C211—C212—H212 119.3
H15B—C15—H15C 109.5 C212—C213—C214 118.2 (2)
C22—C21—H21A 109.5 C212—C213—H213 120.9
C22—C21—H21B 109.5 C214—C213—H213 120.9
H21A—C21—H21B 109.5 C215—C214—C213 121.7 (2)
C22—C21—H21C 109.5 C215—C214—Br2 119.67 (18)
H21A—C21—H21C 109.5 C213—C214—Br2 118.7 (2)
H21B—C21—H21C 109.5 C216—C215—C214 119.3 (2)
O2—C22—C23 125.3 (2) C216—C215—H215 120.3
O2—C22—C21 114.8 (2) C214—C215—H215 120.3
C23—C22—C21 119.8 (2) C215—C216—C211 120.3 (3)
C22—C23—C24 126.5 (2) C215—C216—H216 119.8
C22—C23—H23 116.8 C211—C216—H216 119.8
C24—C23—H23 116.8 C14—N1—C111 120.6 (2)
N2—C24—C23 123.0 (2) C14—N1—Cu1 123.75 (16)
N2—C24—C25 120.7 (2) C111—N1—Cu1 115.60 (16)
C23—C24—C25 116.2 (2) C24—N2—C211 119.9 (2)
C24—C25—H25A 109.5 C24—N2—Cu1 124.07 (16)
C24—C25—H25B 109.5 C211—N2—Cu1 116.06 (15)
H25A—C25—H25B 109.5 C12—O1—Cu1 123.98 (15)
C24—C25—H25C 109.5 C22—O2—Cu1 125.06 (16)
H25A—C25—H25C 109.5 O2—Cu1—O1 145.59 (8)
H25B—C25—H25C 109.5 O2—Cu1—N2 94.80 (8)
C112—C111—C116 119.5 (2) O1—Cu1—N2 93.64 (8)
C112—C111—N1 118.3 (2) O2—Cu1—N1 95.43 (8)
C116—C111—N1 121.8 (2) O1—Cu1—N1 94.70 (8)
C113—C112—C111 120.4 (2) N2—Cu1—N1 148.20 (9)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C115—H115···O1i 0.95 2.47 3.370 (3) 157
C215—H215···O2ii 0.95 2.54 3.378 (3) 147

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GG2104).

References

  1. Bourget-Merle, L., Lappert, M. F. & Severn, J. R. (2002). Chem. Rev. 102, 3031–3065. [DOI] [PubMed]
  2. Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2008). APEX2, SAINT-Plus and SADABS Bruker AXS Inc, Madison, Wisconsin, USA.
  4. Bryndin, V. E., Smolentsev, A. I., Stabnikov, P. A. & Igumenov, I. K. (2008). J. Struct. Chem. 49, 556–559.
  5. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  6. Hsu, S.-H., Chang, J.-C., Lai, C.-L., Hu, C.-H., Lee, H. M., Lee, G.-H., Peng, S.-M. & Huang, J.-H. (2004). Inorg. Chem. 43, 6786–6792. [DOI] [PubMed]
  7. Hsu, S.-H., Li, C.-Y., Chiu, Y.-W., Chiu, M.-C., Lien, Y.-L., Kuo, P.-C., Lee, H. M., Huang, J.-H. & Cheng, C.-P. (2007). J. Organomet. Chem. 692, 5421–5428.
  8. John, A., Katiyar, V., Pang, K., Shaikh, M. M., Nanavati, H. & Ghosh, P. (2007). Polyhedron, 26, 4033–4044.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Stender, M., Eichler, B. E., Hardman, N. J., Power, P. P., Prust, J., Noltemeyer, M. & Roesky, H. W. (2001). Inorg. Chem. 40, 2794–2799. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812042420/gg2104sup1.cif

e-68-m1373-sup1.cif (19.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812042420/gg2104Isup2.hkl

e-68-m1373-Isup2.hkl (265.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES