Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Oct 31;68(Pt 11):m1432. doi: 10.1107/S1600536812044273

(2-Amino­ethane­thiol­ato-κ2 N,S)bis­[1,2-bis­(diphenyl­phosphan­yl)ethane-κ2 P,P′]ruthenium(II) hexa­fluoridophosphate

Asako Igashira-Kamiyama a,*, Motoshi Tamura a, Takumi Konno a,*
PMCID: PMC3515165  PMID: 23284392

Abstract

In the crystal of the title compound, [Ru(C2H6NS)(C26H24P2)2]PF6, the RuII atom is in a slightly distorted octa­hedral geometry, coordinated by one 2-amino­ethane­thiol­ate (aet) and two 1,2-bis­(diphenyl­phosphan­yl)ethane (dppe) ligands. The crystal consists of a pair of enanti­omers (Δ and Λ) of the compound. The Δ and Λ isomers have the λ and δ conformations for the aet chelate rings and the δ and λ conformations for the dppe chelate rings. The F atoms of the PF6 counter-anion are disordered over three positions, with site occupancies of 0.4, 0.3 and 0.3.

Related literature  

For closely related structures, see: Tamura et al. (2007); Matsuura et al. (2006); Hanif et al. (1999). For conformation descriptors of the chelate rings, see: Gispert (2008). For the starting material, see: Bautista et al. (1991). For a description of the Cambridge Structural Database, see: Allen (2002).graphic file with name e-68-m1432-scheme1.jpg

Experimental  

Crystal data  

  • [Ru(C2H6NS)(C26H24P2)2]PF6

  • M r = 1118.96

  • Monoclinic, Inline graphic

  • a = 21.1985 (17) Å

  • b = 11.4000 (9) Å

  • c = 20.9346 (17) Å

  • β = 106.588 (2)°

  • V = 4848.6 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 200 K

  • 0.15 × 0.08 × 0.08 mm

Data collection  

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Rigaku, 1995) T min = 0.684, T max = 0.954

  • 23148 measured reflections

  • 9513 independent reflections

  • 7722 reflections with I > 2σ(I)

  • R int = 0.067

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.112

  • S = 1.20

  • 9513 reflections

  • 638 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.02 e Å−3

  • Δρmin = −0.88 e Å−3

  • Absolute structure: Flack (1983), 3981 Friedel pairs

  • Flack parameter: −0.02 (3)

Data collection: PROCESS-AUTO (Rigaku, 2000); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Yadokari-XG 2009 (Kabuto et al., 2009); software used to prepare material for publication: Yadokari-XG 2009.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812044273/gk2528sup1.cif

e-68-m1432-sup1.cif (53.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812044273/gk2528Isup2.hkl

e-68-m1432-Isup2.hkl (465.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Ru1—N1 2.209 (5)
Ru1—P1 2.3586 (14)
Ru1—P4 2.3672 (15)
Ru1—P3 2.3698 (13)
Ru1—P2 2.4249 (13)
Ru1—S1 2.4317 (15)

Acknowledgments

This work was supported by a Grant-in-Aid for Science Research (grant No. 23350026) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

supplementary crystallographic information

Comment

It has been recognized that the preparation of ruthenium complexes having non-bridging aliphatic thiolato group(s) is difficult because of the high reactivity of a thiolato group bound to a metal center. For example, the direct reaction of RuII with 2-aminoethanethiol (Haet) led to the formation of thiolato-bridged trinuclear complex, [Ru{Ru(aet)3}2]2+ (Matsuura et al., 2006), and furthermore, the reaction of [Ag{Ru(aet)(bpy)2}2]3+ (bpy = 2,2'-bipyridine) with HCl did not give an expected mononuclear complex, [Ru(aet)(bpy)2]+, but produced a dinuclear complex with a disulfide bond, [Ru2(cysta)(bpy)4]4+ (cysta = cystamine) (Tamura et al., 2007). Here, we report the synthesis and crystal structure of [Ru(aet)(dppe)2]PF6, which is a quite rare example of a crystallographically characterized ruthenium(II) complex with an aliphatic thiolato donor. The use of the bulky diphenylphosphine ligand seems to be responsible for the successful isolation of this compound.

The reaction of [RuCl2(dppe)2] (Bautista et al., 1991) with excess Haet in methanol in the presence of NH4PF6 gave a yellow powder of [Ru(aet)(dppe)2]PF6. Single-crystals suitable for X-ray analysis were obtained by the recrystallization of the yellow powder from methanol.

The compound crystallized in a non-centrosymmetric space group Cc, the asymmetric unit of which contains one complex cation and one PF6- anion. The Ru atom is in an NP4S octahedral geometry coordinated by two dppe-κP,P and one aet-κN,S ligands (Fig. 1). The Ru–S [2.431 (2) Å] and Ru–N [2.212 (5) Å] bond distances are slightly longer than those of the related ruthenium(II) complexes with aet ligand(s) (Ru–S = 2.291–2.394 Å, Ru–N = 2.133–2.212 Å) (Tamura et al., 2007; Matsuura et al., 2006; Hanif et al., 1999). On the other hand, the Ru–P bond distances (average 2.380 Å) are similar to those of ruthenium(II) complexes with dppe ligands (av. 2.32 Å), as found in the Cambridge Structural Database (Allen, 2002). Consistent with the space group Cc, the crystal consists of a pair of enantiomers (Δ and Λ) of the ruthenium(II) complex. Two dppe P,P-chelate rings in the complex adopt an ob conformation (δ for Δ isomer, λ for Λ isomer), while its N,S-aet chelate ring has a lel conformation (λ for Δ isomer, δ for Λ isomer). It may be interesting to note that no significant specific intermolecular interactions have been found, except for very weak N-H···F interactions between the complex cations and PF6- anions (Fig. 2).

Experimental

To a solution of 0.20 g (0.21 mmol) of [RuCl2(dppe)2] in 200 ml of methanol was added 0.078 g (1.01 mmol) of Haet and 0.338 g (2.07 mmol) of NH4PF6. The mixture was stirred at room temperature for 1 h. The resulting yellow suspension was concentrated to dryness with a rotary evaporator. The residue was washed with water to give a yellow powder of [Ru(aet)(dppe)2]PF6.1.5H2O. Yield 0.178 g (76%). Anal. Calcd for [Ru(aet)(dppe)2]PF6.1.5H2O: C, 58.54; H, 4.64; N, 1.26%. Found: C, 58.73; H, 4.91; N, 1.16%. 1H NMR (400 MHz, DMSO-d6): d, 8.04 (2H, t, J = 8.4 Hz), 7.93 (2H, t, J = 7.9 Hz), 7.72–7.64 (5H, m), 7.54 (2H, t, J = 8.5 Hz), 7.44–7.25 (17H, m), 7.05 (2H, t, J = 7.0 Hz), 6.98–6.89 (6H, m), 6.57 (2H, t, J = 8.3 Hz), 6.31 (2H, t, J = 8.4 Hz), 2.92–2.82 (3H, m), 2.38–2.34 (2H, m), 2.10–2.07 (2H, br m), 1.58 (1H, br s), 1.39 (1H, br s), 1.06 (1H, br s), 0.86 (1H, br s), 0.67 (1H, br s). 31P NMR (202.47 MHz, DMSO-d6): d, p.p.m. 50.25 (1P, d, J = 321.8 Hz), 48.79 (1P, s), 47.34 (1P, s), 29.74 (1P, d, J = 317.1 Hz). IR (KBr, cm-1): 1435 (νPh), 1097 and 745–694 (νP—Ph), 839 (PF6-), 557 (PF6-).

Single crystals of [Ru(aet)(dppe)2]PF6 suitable for X-ray analysis were obtained by the recrystallization of a yellow powder from methanol at room temperature.

Refinement

H atoms bound to C atoms were placed at calculated positions [C—H = 0.99 (methylene) and 0.95 (phenyl)] and refined as riding with isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)]. H atoms bound to N atoms were located in a difference Fourier map and refined with distance restraint and constrained displacement parameters [N—H = 0.89 (2) Å, Uiso(H) = 1.5Ueq(N)]. The F atoms of the hexafluoridophosphate are disordered over three positions (F1–F6, F7–F12 and F13–F18) with site occupancies of 0.4 (F1–F6) and 0.3 (F7–F12, F13-F18), and refined isotropically.

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of [Ru(aet)(dppe)2]PF6 with the atom-numbering scheme. H atoms and F atoms of the PF6- with minor occupancies were omitted for clarity. Ellipsoids represent 50% probability.

Fig. 2.

Fig. 2.

Crystal packing of [Ru(aet)(dppe)2]PF6 viewed along the y axis. F atoms of the PF6- with minor occupancies were omitted for clarity.

Crystal data

[Ru(C2H6NS)(C26H24P2)2]PF6 F(000) = 2296
Mr = 1118.96 Dx = 1.533 Mg m3
Monoclinic, Cc Mo Kα radiation, λ = 0.71075 Å
Hall symbol: C -2yc Cell parameters from 15716 reflections
a = 21.1985 (17) Å θ = 3.1–27.4°
b = 11.4000 (9) Å µ = 0.59 mm1
c = 20.9346 (17) Å T = 200 K
β = 106.588 (2)° Prism, yellow
V = 4848.6 (7) Å3 0.15 × 0.08 × 0.08 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer 9513 independent reflections
Radiation source: fine-focus sealed tube 7722 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.067
Detector resolution: 10.00 pixels mm-1 θmax = 27.5°, θmin = 3.1°
ω scans h = −27→27
Absorption correction: multi-scan (ABSCOR; Rigaku, 1995) k = −14→14
Tmin = 0.684, Tmax = 0.954 l = −27→26
23148 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0354P)2 + 0.1P] where P = (Fo2 + 2Fc2)/3
S = 1.20 (Δ/σ)max < 0.001
9513 reflections Δρmax = 1.02 e Å3
638 parameters Δρmin = −0.88 e Å3
4 restraints Absolute structure: Flack (1983), 3981 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.02 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Ru1 0.183683 (18) 0.68842 (3) 0.323758 (19) 0.02092 (10)
S1 0.29912 (7) 0.67929 (12) 0.38742 (8) 0.0301 (4)
N1 0.1722 (2) 0.6281 (4) 0.4201 (2) 0.0302 (10)
H1 0.137 (2) 0.654 (5) 0.432 (3) 0.045*
H2 0.167 (3) 0.550 (2) 0.425 (3) 0.045*
C1 0.2930 (3) 0.6267 (6) 0.4680 (3) 0.0429 (16)
H3 0.3015 0.5412 0.4710 0.052*
H4 0.3278 0.6649 0.5039 0.052*
C2 0.2286 (3) 0.6491 (5) 0.4800 (3) 0.0391 (14)
H5 0.2272 0.7315 0.4945 0.047*
H6 0.2241 0.5977 0.5165 0.047*
P1 0.20553 (6) 0.77721 (11) 0.23054 (7) 0.0232 (3)
C3 0.1951 (3) 0.9383 (4) 0.2376 (3) 0.0271 (12)
H7 0.2191 0.9798 0.2101 0.032*
H8 0.1479 0.9587 0.2203 0.032*
C4 0.2210 (3) 0.9779 (4) 0.3095 (3) 0.0280 (12)
H9 0.2097 1.0614 0.3131 0.034*
H10 0.2695 0.9704 0.3243 0.034*
P2 0.18515 (6) 0.88868 (11) 0.36321 (7) 0.0242 (3)
C5 0.1565 (2) 0.7499 (4) 0.1439 (3) 0.0259 (12)
C6 0.1508 (2) 0.6354 (4) 0.1183 (3) 0.0263 (12)
H11 0.1718 0.5727 0.1463 0.032*
C7 0.1152 (3) 0.6119 (5) 0.0530 (3) 0.0347 (13)
H12 0.1113 0.5336 0.0367 0.042*
C8 0.0855 (3) 0.7025 (5) 0.0118 (3) 0.0401 (14)
H13 0.0611 0.6867 −0.0331 0.048*
C9 0.0910 (3) 0.8159 (5) 0.0354 (3) 0.0324 (13)
H14 0.0708 0.8782 0.0066 0.039*
C10 0.1258 (3) 0.8400 (5) 0.1010 (3) 0.0293 (12)
H15 0.1289 0.9185 0.1169 0.035*
C11 0.2893 (2) 0.7749 (4) 0.2191 (3) 0.0242 (11)
C12 0.3020 (3) 0.7339 (5) 0.1614 (3) 0.0343 (14)
H16 0.2668 0.7031 0.1265 0.041*
C13 0.3647 (3) 0.7372 (6) 0.1539 (3) 0.0407 (16)
H17 0.3723 0.7072 0.1144 0.049*
C14 0.4161 (3) 0.7835 (5) 0.2031 (3) 0.0381 (15)
H18 0.4591 0.7860 0.1978 0.046*
C15 0.4046 (3) 0.8260 (5) 0.2602 (4) 0.0407 (15)
H19 0.4396 0.8602 0.2939 0.049*
C16 0.3418 (3) 0.8194 (5) 0.2691 (3) 0.0345 (13)
H20 0.3350 0.8456 0.3097 0.041*
C17 0.1085 (3) 0.9649 (4) 0.3618 (3) 0.0300 (12)
C18 0.0946 (3) 1.0811 (5) 0.3404 (3) 0.0414 (15)
H21 0.1262 1.1246 0.3260 0.050*
C19 0.0363 (3) 1.1332 (5) 0.3400 (4) 0.0476 (17)
H22 0.0280 1.2121 0.3254 0.057*
C20 −0.0103 (3) 1.0720 (6) 0.3606 (4) 0.0460 (17)
H23 −0.0510 1.1081 0.3594 0.055*
C21 0.0020 (3) 0.9582 (5) 0.3828 (3) 0.0417 (15)
H24 −0.0295 0.9164 0.3982 0.050*
C22 0.0606 (3) 0.9053 (5) 0.3826 (3) 0.0314 (13)
H25 0.0683 0.8262 0.3969 0.038*
C23 0.2367 (3) 0.9304 (4) 0.4463 (3) 0.0304 (12)
C24 0.3053 (3) 0.9331 (4) 0.4623 (3) 0.0350 (14)
H26 0.3257 0.9182 0.4282 0.042*
C25 0.3442 (3) 0.9567 (5) 0.5257 (3) 0.0416 (15)
H27 0.3907 0.9586 0.5346 0.050*
C26 0.3164 (3) 0.9775 (5) 0.5764 (3) 0.0435 (16)
H28 0.3433 0.9914 0.6205 0.052*
C27 0.2482 (3) 0.9779 (5) 0.5621 (3) 0.0455 (16)
H29 0.2284 0.9956 0.5964 0.055*
C28 0.2089 (3) 0.9527 (4) 0.4985 (3) 0.0336 (13)
H30 0.1624 0.9505 0.4901 0.040*
P3 0.19576 (6) 0.48846 (10) 0.29860 (7) 0.0233 (3)
C29 0.1124 (3) 0.4253 (4) 0.2654 (3) 0.0277 (13)
H31 0.1147 0.3537 0.2393 0.033*
H32 0.0950 0.4028 0.3028 0.033*
C30 0.0667 (2) 0.5138 (4) 0.2212 (3) 0.0272 (12)
H33 0.0208 0.4846 0.2103 0.033*
H34 0.0785 0.5229 0.1790 0.033*
P4 0.07221 (7) 0.65771 (13) 0.26321 (8) 0.0236 (3)
C31 0.2428 (3) 0.4391 (4) 0.2423 (3) 0.0276 (12)
C32 0.2228 (3) 0.3441 (5) 0.2001 (3) 0.0420 (15)
H35 0.1823 0.3059 0.1973 0.050*
C33 0.2627 (3) 0.3046 (6) 0.1613 (4) 0.0479 (17)
H36 0.2484 0.2415 0.1310 0.057*
C34 0.3218 (3) 0.3564 (6) 0.1672 (3) 0.0496 (17)
H37 0.3495 0.3269 0.1423 0.060*
C35 0.3420 (3) 0.4508 (5) 0.2086 (4) 0.0449 (17)
H38 0.3830 0.4872 0.2113 0.054*
C36 0.3034 (3) 0.4934 (5) 0.2464 (3) 0.0337 (13)
H39 0.3176 0.5589 0.2750 0.040*
C37 0.2340 (3) 0.3912 (4) 0.3691 (3) 0.0301 (13)
C38 0.1971 (3) 0.3350 (4) 0.4064 (3) 0.0375 (14)
H40 0.1508 0.3452 0.3950 0.045*
C39 0.2292 (3) 0.2641 (5) 0.4604 (4) 0.0464 (17)
H41 0.2041 0.2253 0.4851 0.056*
C40 0.2959 (4) 0.2496 (5) 0.4783 (3) 0.0465 (17)
H42 0.3168 0.2019 0.5155 0.056*
C41 0.3328 (3) 0.3040 (5) 0.4426 (4) 0.0454 (16)
H43 0.3791 0.2930 0.4544 0.054*
C42 0.3018 (3) 0.3752 (5) 0.3890 (3) 0.0393 (15)
H44 0.3277 0.4140 0.3652 0.047*
C43 0.0088 (2) 0.6345 (4) 0.3075 (3) 0.0265 (12)
C44 0.0192 (3) 0.5576 (5) 0.3614 (3) 0.0318 (13)
H45 0.0601 0.5176 0.3761 0.038*
C45 −0.0281 (3) 0.5374 (5) 0.3944 (3) 0.0347 (13)
H46 −0.0195 0.4852 0.4312 0.042*
C46 −0.0878 (3) 0.5947 (5) 0.3726 (3) 0.0392 (15)
H47 −0.1206 0.5820 0.3947 0.047*
C47 −0.1001 (3) 0.6699 (5) 0.3190 (4) 0.0441 (16)
H48 −0.1413 0.7087 0.3042 0.053*
C48 −0.0525 (3) 0.6894 (5) 0.2866 (3) 0.0388 (15)
H49 −0.0618 0.7409 0.2494 0.047*
C49 0.0269 (2) 0.7526 (4) 0.1944 (3) 0.0260 (11)
C50 −0.0080 (3) 0.7093 (5) 0.1318 (3) 0.0320 (13)
H50 −0.0092 0.6272 0.1236 0.038*
C51 −0.0407 (3) 0.7846 (5) 0.0820 (3) 0.0353 (13)
H51 −0.0639 0.7534 0.0397 0.042*
C52 −0.0407 (3) 0.9047 (5) 0.0917 (3) 0.0338 (13)
H52 −0.0622 0.9560 0.0564 0.041*
C53 −0.0087 (3) 0.9477 (5) 0.1540 (3) 0.0347 (14)
H53 −0.0096 1.0296 0.1622 0.042*
C54 0.0249 (2) 0.8734 (4) 0.2051 (3) 0.0283 (12)
H54 0.0466 0.9051 0.2477 0.034*
P5 0.54660 (9) 0.74420 (15) 0.06486 (10) 0.0454 (4)
F1 0.5545 (6) 0.6026 (9) 0.0426 (6) 0.050 (3)* 0.40
F2 0.6147 (7) 0.7668 (12) 0.0489 (8) 0.080 (4)* 0.40
F3 0.5868 (8) 0.6925 (13) 0.1387 (9) 0.099 (5)* 0.40
F4 0.5469 (10) 0.8632 (12) 0.0914 (8) 0.093 (4)* 0.40
F5 0.4805 (7) 0.7031 (11) 0.0818 (8) 0.061 (4)* 0.40
F6 0.5053 (7) 0.7599 (12) −0.0126 (7) 0.063 (4)* 0.40
F7 0.4865 (10) 0.8345 (18) 0.0424 (11) 0.091 (6)* 0.30
F8 0.5342 (11) 0.7245 (15) 0.1337 (10) 0.075 (6)* 0.30
F9 0.5920 (7) 0.8583 (10) 0.1011 (7) 0.040 (3)* 0.30
F10 0.6126 (8) 0.6707 (13) 0.0894 (9) 0.062 (4)* 0.30
F11 0.5743 (9) 0.7863 (13) 0.0019 (9) 0.063 (4)* 0.30
F12 0.5083 (10) 0.6387 (15) 0.0333 (10) 0.084 (5)* 0.30
F13 0.4740 (8) 0.6838 (14) 0.0584 (10) 0.053 (5)* 0.30
F14 0.5076 (7) 0.8755 (11) 0.0654 (8) 0.040 (3)* 0.30
F15 0.5624 (9) 0.7389 (13) 0.1454 (8) 0.043 (4)* 0.30
F16 0.6071 (8) 0.8210 (16) 0.0700 (10) 0.073 (5)* 0.30
F17 0.5809 (9) 0.6314 (14) 0.0656 (9) 0.056 (4)* 0.30
F18 0.5308 (11) 0.7675 (15) −0.0113 (9) 0.057 (5)* 0.30

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ru1 0.01844 (17) 0.02342 (17) 0.0212 (2) −0.00033 (19) 0.00615 (14) 0.00016 (19)
S1 0.0202 (7) 0.0355 (8) 0.0317 (10) 0.0002 (6) 0.0031 (7) −0.0012 (6)
N1 0.030 (2) 0.036 (2) 0.025 (3) 0.003 (2) 0.009 (2) 0.005 (2)
C1 0.032 (3) 0.051 (4) 0.036 (4) −0.005 (3) −0.005 (3) 0.001 (3)
C2 0.041 (3) 0.042 (3) 0.029 (4) 0.003 (3) 0.002 (3) 0.007 (3)
P1 0.0218 (6) 0.0257 (6) 0.0225 (8) −0.0015 (5) 0.0071 (6) 0.0001 (6)
C3 0.029 (3) 0.026 (2) 0.028 (3) 0.001 (2) 0.010 (2) 0.005 (2)
C4 0.027 (3) 0.031 (3) 0.029 (3) −0.004 (2) 0.013 (3) 0.001 (2)
P2 0.0249 (7) 0.0241 (6) 0.0241 (8) −0.0012 (5) 0.0078 (6) −0.0014 (6)
C5 0.016 (2) 0.031 (3) 0.031 (3) 0.001 (2) 0.008 (2) 0.002 (2)
C6 0.025 (3) 0.028 (3) 0.026 (3) −0.002 (2) 0.007 (2) −0.001 (2)
C7 0.037 (3) 0.040 (3) 0.027 (3) −0.008 (2) 0.007 (3) −0.007 (3)
C8 0.046 (4) 0.049 (4) 0.023 (4) −0.007 (3) 0.007 (3) −0.004 (3)
C9 0.023 (3) 0.048 (3) 0.023 (3) −0.003 (2) 0.002 (2) 0.007 (3)
C10 0.025 (3) 0.035 (3) 0.031 (3) −0.006 (2) 0.012 (3) 0.002 (2)
C11 0.023 (2) 0.022 (2) 0.029 (3) −0.001 (2) 0.009 (2) 0.002 (2)
C12 0.028 (3) 0.051 (3) 0.027 (4) −0.004 (3) 0.013 (3) −0.002 (3)
C13 0.031 (3) 0.063 (4) 0.032 (4) 0.004 (3) 0.015 (3) 0.012 (3)
C14 0.024 (3) 0.043 (3) 0.051 (4) 0.004 (2) 0.017 (3) 0.010 (3)
C15 0.024 (3) 0.045 (3) 0.052 (4) −0.007 (3) 0.009 (3) −0.008 (3)
C16 0.026 (3) 0.043 (3) 0.033 (4) 0.001 (2) 0.006 (3) −0.004 (3)
C17 0.036 (3) 0.026 (3) 0.031 (3) 0.004 (2) 0.014 (3) −0.006 (2)
C18 0.038 (3) 0.037 (3) 0.045 (4) 0.002 (3) 0.004 (3) 0.000 (3)
C19 0.032 (3) 0.040 (3) 0.067 (5) 0.010 (3) 0.008 (3) 0.008 (3)
C20 0.029 (3) 0.050 (4) 0.056 (5) 0.012 (3) 0.007 (3) −0.009 (3)
C21 0.034 (3) 0.047 (4) 0.048 (4) −0.004 (3) 0.018 (3) −0.003 (3)
C22 0.025 (3) 0.034 (3) 0.034 (4) 0.005 (2) 0.007 (3) 0.001 (2)
C23 0.039 (3) 0.020 (2) 0.029 (3) 0.002 (2) 0.004 (3) 0.000 (2)
C24 0.037 (3) 0.026 (3) 0.039 (4) −0.001 (2) 0.005 (3) 0.000 (3)
C25 0.037 (3) 0.042 (3) 0.036 (4) 0.004 (3) −0.005 (3) −0.006 (3)
C26 0.053 (4) 0.034 (3) 0.032 (4) 0.004 (3) −0.006 (3) −0.008 (3)
C27 0.067 (5) 0.043 (3) 0.023 (4) 0.013 (3) 0.007 (3) −0.004 (3)
C28 0.042 (3) 0.030 (3) 0.027 (3) 0.005 (2) 0.007 (3) −0.003 (2)
P3 0.0215 (6) 0.0231 (6) 0.0253 (8) 0.0010 (5) 0.0069 (6) 0.0006 (6)
C29 0.030 (3) 0.022 (2) 0.032 (3) −0.002 (2) 0.009 (3) 0.000 (2)
C30 0.022 (3) 0.029 (3) 0.032 (3) −0.001 (2) 0.011 (2) 0.001 (2)
P4 0.0194 (7) 0.0261 (6) 0.0254 (9) −0.0009 (6) 0.0064 (6) 0.0002 (6)
C31 0.026 (3) 0.030 (3) 0.027 (3) 0.012 (2) 0.008 (2) 0.002 (2)
C32 0.039 (3) 0.053 (4) 0.033 (4) −0.001 (3) 0.009 (3) −0.009 (3)
C33 0.053 (4) 0.059 (4) 0.034 (4) 0.012 (3) 0.018 (3) −0.013 (3)
C34 0.049 (4) 0.067 (4) 0.039 (4) 0.024 (3) 0.023 (3) 0.005 (4)
C35 0.039 (4) 0.045 (4) 0.059 (5) 0.013 (3) 0.027 (3) 0.005 (3)
C36 0.032 (3) 0.029 (3) 0.041 (4) 0.004 (2) 0.013 (3) 0.003 (3)
C37 0.036 (3) 0.028 (3) 0.029 (4) 0.004 (2) 0.013 (3) 0.003 (2)
C38 0.046 (3) 0.029 (3) 0.041 (4) 0.002 (2) 0.018 (3) 0.011 (3)
C39 0.061 (4) 0.034 (3) 0.049 (5) 0.011 (3) 0.023 (4) 0.017 (3)
C40 0.071 (5) 0.036 (3) 0.031 (4) 0.018 (3) 0.012 (4) 0.007 (3)
C41 0.054 (4) 0.037 (3) 0.043 (4) 0.017 (3) 0.010 (3) 0.008 (3)
C42 0.038 (3) 0.038 (3) 0.041 (4) 0.011 (3) 0.010 (3) 0.008 (3)
C43 0.021 (3) 0.028 (3) 0.031 (3) −0.001 (2) 0.009 (2) 0.001 (2)
C44 0.028 (3) 0.036 (3) 0.035 (4) −0.003 (2) 0.014 (3) 0.000 (3)
C45 0.039 (3) 0.036 (3) 0.033 (4) −0.008 (2) 0.018 (3) −0.002 (3)
C46 0.035 (3) 0.043 (3) 0.051 (4) −0.009 (3) 0.031 (3) −0.004 (3)
C47 0.029 (3) 0.052 (4) 0.056 (5) 0.009 (3) 0.020 (3) 0.006 (3)
C48 0.024 (3) 0.046 (3) 0.053 (4) 0.008 (2) 0.021 (3) 0.011 (3)
C49 0.015 (2) 0.032 (3) 0.030 (3) −0.004 (2) 0.006 (2) 0.001 (2)
C50 0.025 (3) 0.038 (3) 0.032 (3) −0.004 (2) 0.006 (3) −0.002 (3)
C51 0.024 (3) 0.047 (3) 0.031 (4) 0.001 (2) 0.001 (3) 0.007 (3)
C52 0.024 (3) 0.045 (3) 0.029 (3) −0.001 (2) 0.000 (2) 0.011 (3)
C53 0.029 (3) 0.029 (3) 0.048 (4) 0.002 (2) 0.014 (3) 0.011 (3)
C54 0.023 (3) 0.031 (3) 0.029 (3) −0.003 (2) 0.004 (2) 0.003 (2)
P5 0.0505 (10) 0.0507 (10) 0.0380 (11) −0.0106 (8) 0.0173 (9) −0.0057 (8)

Geometric parameters (Å, º)

Ru1—N1 2.209 (5) C28—H30 0.9500
Ru1—P1 2.3586 (14) P3—C31 1.835 (5)
Ru1—P4 2.3672 (15) P3—C37 1.838 (6)
Ru1—P3 2.3698 (13) P3—C29 1.850 (5)
Ru1—P2 2.4249 (13) C29—C30 1.517 (7)
Ru1—S1 2.4317 (15) C29—H31 0.9900
S1—C1 1.831 (7) C29—H32 0.9900
N1—C2 1.484 (8) C30—P4 1.849 (5)
N1—H1 0.90 (2) C30—H33 0.9900
N1—H2 0.91 (2) C30—H34 0.9900
C1—C2 1.478 (8) P4—C49 1.837 (6)
C1—H3 0.9900 P4—C43 1.856 (5)
C1—H4 0.9900 C31—C32 1.386 (8)
C2—H5 0.9900 C31—C36 1.406 (7)
C2—H6 0.9900 C32—C33 1.404 (9)
P1—C5 1.842 (6) C32—H35 0.9500
P1—C11 1.859 (5) C33—C34 1.358 (9)
P1—C3 1.860 (5) C33—H36 0.9500
C3—C4 1.517 (8) C34—C35 1.372 (9)
C3—H7 0.9900 C34—H37 0.9500
C3—H8 0.9900 C35—C36 1.379 (8)
C4—P2 1.833 (5) C35—H38 0.9500
C4—H9 0.9900 C36—H39 0.9500
C4—H10 0.9900 C37—C42 1.390 (8)
P2—C23 1.834 (6) C37—C38 1.407 (8)
P2—C17 1.835 (5) C38—C39 1.397 (8)
C5—C10 1.396 (7) C38—H40 0.9500
C5—C6 1.403 (7) C39—C40 1.366 (9)
C6—C7 1.386 (8) C39—H41 0.9500
C6—H11 0.9500 C40—C41 1.375 (10)
C7—C8 1.378 (8) C40—H42 0.9500
C7—H12 0.9500 C41—C42 1.388 (8)
C8—C9 1.377 (8) C41—H43 0.9500
C8—H13 0.9500 C42—H44 0.9500
C9—C10 1.389 (8) C43—C48 1.395 (7)
C9—H14 0.9500 C43—C44 1.396 (8)
C10—H15 0.9500 C44—C45 1.389 (7)
C11—C16 1.388 (8) C44—H45 0.9500
C11—C12 1.389 (8) C45—C46 1.380 (8)
C12—C13 1.385 (8) C45—H46 0.9500
C12—H16 0.9500 C46—C47 1.376 (9)
C13—C14 1.373 (9) C46—H47 0.9500
C13—H17 0.9500 C47—C48 1.386 (8)
C14—C15 1.375 (9) C47—H48 0.9500
C14—H18 0.9500 C48—H49 0.9500
C15—C16 1.396 (8) C49—C54 1.398 (7)
C15—H19 0.9500 C49—C50 1.400 (8)
C16—H20 0.9500 C50—C51 1.375 (8)
C17—C22 1.391 (7) C50—H50 0.9500
C17—C18 1.403 (7) C51—C52 1.384 (8)
C18—C19 1.369 (8) C51—H51 0.9500
C18—H21 0.9500 C52—C53 1.378 (8)
C19—C20 1.375 (9) C52—H52 0.9500
C19—H22 0.9500 C53—C54 1.390 (8)
C20—C21 1.377 (9) C53—H53 0.9500
C20—H23 0.9500 C54—H54 0.9500
C21—C22 1.381 (7) P5—F4 1.466 (14)
C21—H24 0.9500 P5—F17 1.475 (14)
C22—H25 0.9500 P5—F12 1.495 (17)
C23—C24 1.396 (8) P5—F16 1.531 (16)
C23—C28 1.405 (8) P5—F8 1.552 (19)
C24—C25 1.375 (8) P5—F18 1.555 (18)
C24—H26 0.9500 P5—F10 1.585 (15)
C25—C26 1.374 (9) P5—F2 1.592 (13)
C25—H27 0.9500 P5—F7 1.601 (19)
C26—C27 1.390 (9) P5—F5 1.610 (13)
C26—H28 0.9500 P5—F6 1.617 (14)
C27—C28 1.384 (8) P5—F15 1.623 (15)
C27—H29 0.9500
N1—Ru1—P1 171.03 (13) C25—C26—H28 120.5
N1—Ru1—P4 95.14 (13) C27—C26—H28 120.5
P1—Ru1—P4 91.27 (5) C28—C27—C26 120.6 (6)
N1—Ru1—P3 87.17 (13) C28—C27—H29 119.7
P1—Ru1—P3 99.77 (5) C26—C27—H29 119.7
P4—Ru1—P3 83.88 (5) C27—C28—C23 121.0 (6)
N1—Ru1—P2 88.63 (13) C27—C28—H30 119.5
P1—Ru1—P2 83.76 (5) C23—C28—H30 119.5
P4—Ru1—P2 103.62 (5) C31—P3—C37 97.8 (2)
P3—Ru1—P2 171.71 (5) C31—P3—C29 105.9 (3)
N1—Ru1—S1 80.92 (13) C37—P3—C29 102.8 (3)
P1—Ru1—S1 93.86 (5) C31—P3—Ru1 123.39 (17)
P4—Ru1—S1 169.03 (5) C37—P3—Ru1 116.92 (18)
P3—Ru1—S1 85.70 (5) C29—P3—Ru1 107.81 (16)
P2—Ru1—S1 86.59 (5) C30—C29—P3 110.2 (3)
C1—S1—Ru1 101.18 (19) C30—C29—H31 109.6
C2—N1—Ru1 116.7 (4) P3—C29—H31 109.6
C2—N1—H1 104 (4) C30—C29—H32 109.6
Ru1—N1—H1 118 (4) P3—C29—H32 109.6
C2—N1—H2 99 (4) H31—C29—H32 108.1
Ru1—N1—H2 118 (4) C29—C30—P4 111.0 (4)
H1—N1—H2 98 (5) C29—C30—H33 109.4
C2—C1—S1 114.3 (4) P4—C30—H33 109.4
C2—C1—H3 108.7 C29—C30—H34 109.4
S1—C1—H3 108.7 P4—C30—H34 109.4
C2—C1—H4 108.7 H33—C30—H34 108.0
S1—C1—H4 108.7 C49—P4—C30 101.7 (3)
H3—C1—H4 107.6 C49—P4—C43 100.6 (2)
C1—C2—N1 112.9 (5) C30—P4—C43 98.9 (2)
C1—C2—H5 109.0 C49—P4—Ru1 123.42 (16)
N1—C2—H5 109.0 C30—P4—Ru1 107.70 (17)
C1—C2—H6 109.0 C43—P4—Ru1 120.52 (19)
N1—C2—H6 109.0 C32—C31—C36 119.3 (5)
H5—C2—H6 107.8 C32—C31—P3 121.7 (4)
C5—P1—C11 99.3 (2) C36—C31—P3 118.7 (4)
C5—P1—C3 101.4 (2) C31—C32—C33 119.6 (6)
C11—P1—C3 99.4 (2) C31—C32—H35 120.2
C5—P1—Ru1 123.58 (17) C33—C32—H35 120.2
C11—P1—Ru1 121.42 (18) C34—C33—C32 120.1 (6)
C3—P1—Ru1 107.59 (18) C34—C33—H36 120.0
C4—C3—P1 110.8 (4) C32—C33—H36 120.0
C4—C3—H7 109.5 C33—C34—C35 120.8 (6)
P1—C3—H7 109.5 C33—C34—H37 119.6
C4—C3—H8 109.5 C35—C34—H37 119.6
P1—C3—H8 109.5 C34—C35—C36 120.6 (6)
H7—C3—H8 108.1 C34—C35—H38 119.7
C3—C4—P2 110.4 (3) C36—C35—H38 119.7
C3—C4—H9 109.6 C35—C36—C31 119.5 (5)
P2—C4—H9 109.6 C35—C36—H39 120.3
C3—C4—H10 109.6 C31—C36—H39 120.3
P2—C4—H10 109.6 C42—C37—C38 117.6 (5)
H9—C4—H10 108.1 C42—C37—P3 120.1 (4)
C4—P2—C23 101.5 (3) C38—C37—P3 122.2 (4)
C4—P2—C17 104.3 (2) C39—C38—C37 119.6 (6)
C23—P2—C17 100.2 (3) C39—C38—H40 120.2
C4—P2—Ru1 106.29 (18) C37—C38—H40 120.2
C23—P2—Ru1 120.91 (17) C40—C39—C38 121.2 (6)
C17—P2—Ru1 121.00 (17) C40—C39—H41 119.4
C10—C5—C6 117.8 (5) C38—C39—H41 119.4
C10—C5—P1 122.4 (4) C39—C40—C41 120.1 (6)
C6—C5—P1 119.7 (4) C39—C40—H42 119.9
C7—C6—C5 121.3 (5) C41—C40—H42 119.9
C7—C6—H11 119.4 C40—C41—C42 119.4 (6)
C5—C6—H11 119.4 C40—C41—H43 120.3
C8—C7—C6 119.7 (5) C42—C41—H43 120.3
C8—C7—H12 120.1 C41—C42—C37 122.0 (6)
C6—C7—H12 120.1 C41—C42—H44 119.0
C9—C8—C7 120.1 (6) C37—C42—H44 119.0
C9—C8—H13 119.9 C48—C43—C44 116.9 (5)
C7—C8—H13 119.9 C48—C43—P4 121.4 (4)
C8—C9—C10 120.5 (5) C44—C43—P4 121.6 (4)
C8—C9—H14 119.7 C45—C44—C43 122.5 (5)
C10—C9—H14 119.7 C45—C44—H45 118.8
C9—C10—C5 120.6 (5) C43—C44—H45 118.8
C9—C10—H15 119.7 C46—C45—C44 118.8 (5)
C5—C10—H15 119.7 C46—C45—H46 120.6
C16—C11—C12 117.8 (5) C44—C45—H46 120.6
C16—C11—P1 119.2 (4) C47—C46—C45 120.4 (5)
C12—C11—P1 123.0 (4) C47—C46—H47 119.8
C13—C12—C11 121.3 (6) C45—C46—H47 119.8
C13—C12—H16 119.3 C46—C47—C48 120.3 (5)
C11—C12—H16 119.3 C46—C47—H48 119.9
C14—C13—C12 120.5 (6) C48—C47—H48 119.9
C14—C13—H17 119.8 C47—C48—C43 121.2 (6)
C12—C13—H17 119.8 C47—C48—H49 119.4
C13—C14—C15 119.1 (5) C43—C48—H49 119.4
C13—C14—H18 120.4 C54—C49—C50 117.7 (5)
C15—C14—H18 120.4 C54—C49—P4 119.2 (4)
C14—C15—C16 120.7 (6) C50—C49—P4 123.0 (4)
C14—C15—H19 119.7 C51—C50—C49 120.5 (5)
C16—C15—H19 119.7 C51—C50—H50 119.8
C11—C16—C15 120.6 (6) C49—C50—H50 119.8
C11—C16—H20 119.7 C50—C51—C52 121.9 (6)
C15—C16—H20 119.7 C50—C51—H51 119.1
C22—C17—C18 117.0 (5) C52—C51—H51 119.1
C22—C17—P2 119.1 (4) C53—C52—C51 118.0 (5)
C18—C17—P2 123.9 (4) C53—C52—H52 121.0
C19—C18—C17 121.3 (6) C51—C52—H52 121.0
C19—C18—H21 119.3 C52—C53—C54 121.1 (5)
C17—C18—H21 119.3 C52—C53—H53 119.4
C18—C19—C20 120.4 (6) C54—C53—H53 119.4
C18—C19—H22 119.8 C53—C54—C49 120.7 (5)
C20—C19—H22 119.8 C53—C54—H54 119.7
C19—C20—C21 119.9 (5) C49—C54—H54 119.7
C19—C20—H23 120.0 F17—P5—F16 95.6 (11)
C21—C20—H23 120.0 F12—P5—F8 94.6 (10)
C20—C21—C22 119.6 (5) F17—P5—F18 97.0 (9)
C20—C21—H24 120.2 F16—P5—F18 84.6 (11)
C22—C21—H24 120.2 F12—P5—F10 92.0 (9)
C21—C22—C17 121.7 (5) F8—P5—F10 89.5 (9)
C21—C22—H25 119.2 F4—P5—F2 91.4 (8)
C17—C22—H25 119.2 F12—P5—F7 95.8 (11)
C24—C23—C28 116.7 (5) F8—P5—F7 92.0 (10)
C24—C23—P2 122.0 (5) F10—P5—F7 171.9 (10)
C28—C23—P2 121.1 (4) F4—P5—F5 95.4 (8)
C25—C24—C23 122.2 (6) F2—P5—F5 172.3 (7)
C25—C24—H26 118.9 F4—P5—F6 102.7 (9)
C23—C24—H26 118.9 F2—P5—F6 92.0 (8)
C26—C25—C24 120.5 (6) F5—P5—F6 89.8 (8)
C26—C25—H27 119.7 F17—P5—F15 90.1 (9)
C24—C25—H27 119.7 F16—P5—F15 91.6 (10)
C25—C26—C27 118.9 (6) F18—P5—F15 172.2 (8)
N1—Ru1—S1—C1 1.0 (2) C25—C26—C27—C28 2.8 (9)
P1—Ru1—S1—C1 173.7 (2) C26—C27—C28—C23 −2.4 (9)
P4—Ru1—S1—C1 −68.6 (4) C24—C23—C28—C27 1.0 (8)
P3—Ru1—S1—C1 −86.8 (2) P2—C23—C28—C27 176.4 (4)
P2—Ru1—S1—C1 90.2 (2) N1—Ru1—P3—C31 −152.5 (2)
P4—Ru1—N1—C2 −169.9 (4) P1—Ru1—P3—C31 21.8 (2)
P3—Ru1—N1—C2 106.5 (4) P4—Ru1—P3—C31 112.0 (2)
P2—Ru1—N1—C2 −66.4 (4) S1—Ru1—P3—C31 −71.4 (2)
S1—Ru1—N1—C2 20.4 (4) N1—Ru1—P3—C37 −31.4 (2)
Ru1—S1—C1—C2 −22.2 (5) P1—Ru1—P3—C37 142.8 (2)
S1—C1—C2—N1 41.0 (6) P4—Ru1—P3—C37 −126.9 (2)
Ru1—N1—C2—C1 −40.8 (6) S1—Ru1—P3—C37 49.7 (2)
P4—Ru1—P1—C5 −23.9 (2) N1—Ru1—P3—C29 83.6 (2)
P3—Ru1—P1—C5 60.1 (2) P1—Ru1—P3—C29 −102.1 (2)
P2—Ru1—P1—C5 −127.5 (2) P4—Ru1—P3—C29 −11.8 (2)
S1—Ru1—P1—C5 146.40 (19) S1—Ru1—P3—C29 164.7 (2)
P4—Ru1—P1—C11 −153.23 (19) C31—P3—C29—C30 −95.6 (4)
P3—Ru1—P1—C11 −69.21 (19) C37—P3—C29—C30 162.4 (4)
P2—Ru1—P1—C11 103.22 (19) Ru1—P3—C29—C30 38.3 (4)
S1—Ru1—P1—C11 17.08 (19) P3—C29—C30—P4 −49.2 (5)
P4—Ru1—P1—C3 93.51 (18) C29—C30—P4—C49 168.7 (4)
P3—Ru1—P1—C3 177.52 (18) C29—C30—P4—C43 −88.4 (4)
P2—Ru1—P1—C3 −10.05 (18) C29—C30—P4—Ru1 37.7 (4)
S1—Ru1—P1—C3 −96.19 (18) N1—Ru1—P4—C49 144.9 (3)
C5—P1—C3—C4 169.2 (4) P1—Ru1—P4—C49 −28.8 (2)
C11—P1—C3—C4 −89.1 (4) P3—Ru1—P4—C49 −128.5 (2)
Ru1—P1—C3—C4 38.2 (4) P2—Ru1—P4—C49 55.1 (2)
P1—C3—C4—P2 −51.7 (4) S1—Ru1—P4—C49 −146.7 (4)
C3—C4—P2—C23 168.0 (4) N1—Ru1—P4—C30 −97.4 (2)
C3—C4—P2—C17 −88.2 (4) P1—Ru1—P4—C30 88.91 (19)
C3—C4—P2—Ru1 40.8 (4) P3—Ru1—P4—C30 −10.79 (19)
N1—Ru1—P2—C4 161.9 (2) P2—Ru1—P4—C30 172.79 (19)
P1—Ru1—P2—C4 −13.36 (19) S1—Ru1—P4—C30 −29.0 (4)
P4—Ru1—P2—C4 −103.16 (19) N1—Ru1—P4—C43 14.7 (2)
S1—Ru1—P2—C4 80.90 (19) P1—Ru1—P4—C43 −159.01 (19)
N1—Ru1—P2—C23 47.2 (3) P3—Ru1—P4—C43 101.30 (19)
P1—Ru1—P2—C23 −128.0 (2) P2—Ru1—P4—C43 −75.12 (19)
P4—Ru1—P2—C23 142.2 (2) S1—Ru1—P4—C43 83.1 (4)
S1—Ru1—P2—C23 −33.8 (2) C37—P3—C31—C32 86.9 (5)
N1—Ru1—P2—C17 −79.7 (3) C29—P3—C31—C32 −18.9 (5)
P1—Ru1—P2—C17 105.1 (2) Ru1—P3—C31—C32 −143.6 (4)
P4—Ru1—P2—C17 15.3 (2) C37—P3—C31—C36 −87.8 (5)
S1—Ru1—P2—C17 −160.6 (2) C29—P3—C31—C36 166.5 (4)
C11—P1—C5—C10 −98.7 (4) Ru1—P3—C31—C36 41.8 (5)
C3—P1—C5—C10 3.0 (5) C36—C31—C32—C33 −1.0 (9)
Ru1—P1—C5—C10 123.3 (4) P3—C31—C32—C33 −175.6 (5)
C11—P1—C5—C6 79.1 (4) C31—C32—C33—C34 2.6 (10)
C3—P1—C5—C6 −179.2 (4) C32—C33—C34—C35 −2.9 (11)
Ru1—P1—C5—C6 −58.9 (4) C33—C34—C35—C36 1.5 (10)
C10—C5—C6—C7 −1.0 (7) C34—C35—C36—C31 0.1 (10)
P1—C5—C6—C7 −178.9 (4) C32—C31—C36—C35 −0.3 (9)
C5—C6—C7—C8 1.0 (8) P3—C31—C36—C35 174.4 (5)
C6—C7—C8—C9 −0.1 (9) C31—P3—C37—C42 43.7 (5)
C7—C8—C9—C10 −0.7 (9) C29—P3—C37—C42 152.1 (5)
C8—C9—C10—C5 0.7 (8) Ru1—P3—C37—C42 −90.1 (5)
C6—C5—C10—C9 0.1 (7) C31—P3—C37—C38 −139.2 (5)
P1—C5—C10—C9 178.0 (4) C29—P3—C37—C38 −30.8 (6)
C5—P1—C11—C16 164.8 (4) Ru1—P3—C37—C38 87.0 (5)
C3—P1—C11—C16 61.4 (5) C42—C37—C38—C39 −1.4 (9)
Ru1—P1—C11—C16 −56.0 (5) P3—C37—C38—C39 −178.6 (5)
C5—P1—C11—C12 −13.1 (5) C37—C38—C39—C40 1.0 (10)
C3—P1—C11—C12 −116.4 (5) C38—C39—C40—C41 −0.8 (10)
Ru1—P1—C11—C12 126.1 (4) C39—C40—C41—C42 1.1 (10)
C16—C11—C12—C13 0.0 (9) C40—C41—C42—C37 −1.6 (10)
P1—C11—C12—C13 177.9 (5) C38—C37—C42—C41 1.7 (9)
C11—C12—C13—C14 −1.3 (10) P3—C37—C42—C41 179.0 (5)
C12—C13—C14—C15 0.3 (10) C49—P4—C43—C48 −2.9 (5)
C13—C14—C15—C16 1.8 (9) C30—P4—C43—C48 −106.6 (5)
C12—C11—C16—C15 2.1 (8) Ru1—P4—C43—C48 136.7 (4)
P1—C11—C16—C15 −175.8 (4) C49—P4—C43—C44 174.3 (4)
C14—C15—C16—C11 −3.1 (9) C30—P4—C43—C44 70.5 (5)
C4—P2—C17—C22 162.9 (5) Ru1—P4—C43—C44 −46.1 (5)
C23—P2—C17—C22 −92.3 (5) C48—C43—C44—C45 −1.5 (8)
Ru1—P2—C17—C22 43.5 (6) P4—C43—C44—C45 −178.7 (4)
C4—P2—C17—C18 −16.6 (6) C43—C44—C45—C46 0.7 (9)
C23—P2—C17—C18 88.2 (5) C44—C45—C46—C47 0.2 (9)
Ru1—P2—C17—C18 −136.1 (5) C45—C46—C47—C48 −0.3 (10)
C22—C17—C18—C19 −0.1 (9) C46—C47—C48—C43 −0.6 (10)
P2—C17—C18—C19 179.5 (5) C44—C43—C48—C47 1.4 (9)
C17—C18—C19—C20 −0.2 (11) P4—C43—C48—C47 178.7 (5)
C18—C19—C20—C21 1.1 (11) C30—P4—C49—C54 −174.5 (4)
C19—C20—C21—C22 −1.8 (10) C43—P4—C49—C54 84.0 (4)
C20—C21—C22—C17 1.5 (10) Ru1—P4—C49—C54 −54.0 (5)
C18—C17—C22—C21 −0.6 (9) C30—P4—C49—C50 7.9 (5)
P2—C17—C22—C21 179.8 (5) C43—P4—C49—C50 −93.6 (5)
C4—P2—C23—C24 −47.9 (5) Ru1—P4—C49—C50 128.4 (4)
C17—P2—C23—C24 −155.0 (4) C54—C49—C50—C51 2.8 (7)
Ru1—P2—C23—C24 69.2 (5) P4—C49—C50—C51 −179.6 (4)
C4—P2—C23—C28 136.9 (4) C49—C50—C51—C52 −0.4 (8)
C17—P2—C23—C28 29.8 (5) C50—C51—C52—C53 −2.2 (8)
Ru1—P2—C23—C28 −106.0 (4) C51—C52—C53—C54 2.4 (8)
C28—C23—C24—C25 −0.2 (8) C52—C53—C54—C49 0.0 (8)
P2—C23—C24—C25 −175.5 (4) C50—C49—C54—C53 −2.6 (7)
C23—C24—C25—C26 0.7 (9) P4—C49—C54—C53 179.7 (4)
C24—C25—C26—C27 −1.9 (9)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···F11i 0.90 (2) 2.34 (4) 3.198 (17) 159 (6)

Symmetry code: (i) x−1/2, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2528).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Bautista, M. T., Cappellani, E. P., Drouin, S. D., Morris, R. H., Schweitzer, C. T., Sella, A. & Zubkowsky, J. (1991). J. Am. Chem. Soc. 113, 4876–4887.
  3. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  4. Gispert, J. R. (2008). Coordination Chemistry, pp. 103–107. Weinheim: Wiley-VCH.
  5. Hanif, K. M., Hursthouse, M. B., Kabir, S. E., Malik, K. M. A. & Rosenberg, E. (1999). J. Organomet. Chem. 580, 60–65.
  6. Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). Nihon Kessho Gakkaishi, 51, 218–224.
  7. Matsuura, N., Igashira-Kamiyama, A., Kawamoto, T. & Konno, T. (2006). Inorg. Chem. 45, 401–408. [DOI] [PubMed]
  8. Rigaku (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  9. Rigaku (2000). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Tamura, M., Matsuura, N., Kawamoto, T. & Konno, T. (2007). Inorg. Chem. 46, 6834–6836. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812044273/gk2528sup1.cif

e-68-m1432-sup1.cif (53.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812044273/gk2528Isup2.hkl

e-68-m1432-Isup2.hkl (465.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES