Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Oct 3;68(Pt 11):o3062. doi: 10.1107/S1600536812040561

3-(3,4-Dichloro­benzyl­idene)chroman-4-one

Kaalin Gopaul a, Neil Anthony Koorbanally a,*, Mahidansha M Shaikh a, Hong Su b, Deresh Ramjugernath c
PMCID: PMC3515170  PMID: 23284397

Abstract

The distinctive feature of the structure of the title compound, C16H10Cl2O2, is the formation of a zigzag chain along [100] via Cl⋯Cl inter­actions [3.591 (1) and 3.631 (1) Å]. The chroman­one moiety is fused with the benzene ring and adopts a half-chair conformation. The dihedral angle between the benzene ring of the chromanone moiety and the dichlorobenzene plane is 56.14 (8)°.

Related literature  

For background to homoisoflavonoids, see: Kirkiacharian et al. (1984). For a related structure, see: Gopaul et al. (2012).graphic file with name e-68-o3062-scheme1.jpg

Experimental  

Crystal data  

  • C16H10Cl2O2

  • M r = 305.14

  • Monoclinic, Inline graphic

  • a = 3.9224 (3) Å

  • b = 11.5175 (10) Å

  • c = 28.957 (3) Å

  • β = 92.270 (2)°

  • V = 1307.12 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.49 mm−1

  • T = 173 K

  • 0.16 × 0.12 × 0.11 mm

Data collection  

  • Bruker Kappa Duo APEXII Diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997) T min = 0.925, T max = 0.948

  • 15291 measured reflections

  • 3258 independent reflections

  • 2611 reflections with I > 2σ(I)

  • R int = 0.037

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.089

  • S = 1.03

  • 3258 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812040561/hg5252sup1.cif

e-68-o3062-sup1.cif (17.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812040561/hg5252Isup2.hkl

e-68-o3062-Isup2.hkl (159.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the University of KwaZulu-Natal and the South Africa Research Chairs initiative of the Department of Science and Technology for financial support and the National Research Foundation of South Africa for a bursary for KG.

supplementary crystallographic information

Comment

The title compound, 3-(3,4-dichlorobenzylidene)chroman-4-one (C16H10Cl2O2), belongs to a class of compounds called homoisoflavonoids, which are C-16, α,β unsaturated carbonyl compounds containing two aromatic rings. They are a group of naturally occurring molecules that are structurally related to isoflavonoids but differ by containing one more carbon atom (Kirkiacharian et al., 1984; Gopaul et al., 2012).

A view of the the title compound is shown in Fig. 1. The chromanone moiety is fused with the benzene ring and adopts a half chair conformation. The dihedral angle between the benzene ring of the chromanone moiety and the dichlorobenzene plane is 56.14 (8)°. The inversion-related molecules are linked into zigzag chains via Cl···Cl interactions between Cl2 at (x, y, z) and Cl2 at (1 - x, 1 - y, 1 - z) and Cl2 at (-x, 1 - y, 1 - z) with distances of 3.591 (1) Å and 3.631 (1) Å respectively. Molecules related by translation along the a axis stack via double π···π interactions of the aromatic rings, with a centroid distance equal to the length of a axis. This feature is illustrated in Fig. 2.

Experimental

A mixture of chroman-4-one (1 g, 6.749 mmol), 3,4-dichlorobenzaldehyde (1.417 g, 8.099 mmol) and 10–15 drops of piperidine was heated at 80°C for 18 hrs. The reaction mixture was monitored for completion by thin layer chromatography. Upon completion, the reaction mixture was cooled, diluted with water and neutralized using 10% HCl. The reaction mixture was extracted with ethyl acetate (3 × 30 ml). The ethyl acetate layers were combined, washed with brine (20 ml), water (2 × 10 ml) and dried over anhydrous magnesium sulfate. The solvent was reduced and the compound purified by column chromatography using silica gel (Merck 9385, 40–63 µm particle size) with a mobile phase of 2% ethyl acetate in hexane to yield the title compound with a m.p. of 165–167 °C.

1H NMR: δ (p.p.m.): 5.27 (2H, d, J = 1.88 Hz, H-2), 6.96 (1H, d, J = 8.28 Hz, H-8), 7.07 (1H, td, J = 7.52, 0.68 Hz, H-6), 7.12 (1H, dd, J = 8.28, 1.96 Hz, H-6'), 7.38 (1H, d, J = 1.92 Hz, H-2'), 7.49 (1H, ddd, J = 8.72, 7.48, 1.72 Hz, H-7), 7.50 (1H, d, J = 8.40 Hz, H-5'), 7.72 (1H, s, H-9), 8.00 (1H, dd, J = 7.88, 1.64 Hz, H-5)

13C NMR: δ (p.p.m.): 67.27 (C-2), 118.00 (C-8), 121.79 (C-4a), 122.16 (C-6), 128.00 (C-5), 128.94 (C-6'), 130.79 (C-5'), 131.41 (C-2'), 132.44 (C-3), 133.15 (C-1'), 133.69 (C-3'), 134.28 (C-4'), 134.55 (C-9), 136.19 (C-7), 161.13 (C-8a), 181.71(C-4)

Refinement

All hydrogen atoms were placed in geometrically idealized positions and constrainted to ride on their parent atoms, with aromatic C—H = 0.95 Å and methylene C—H = 0.99 Å; Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom labelling scheme and with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Partial packing diagram showing the Cl···Cl interactions and π···π stacking as dashed lines. H atoms have been omitted.

Crystal data

C16H10Cl2O2 F(000) = 624
Mr = 305.14 Dx = 1.551 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 15291 reflections
a = 3.9224 (3) Å θ = 1.9–28.3°
b = 11.5175 (10) Å µ = 0.49 mm1
c = 28.957 (3) Å T = 173 K
β = 92.270 (2)° Block, colourless
V = 1307.12 (19) Å3 0.16 × 0.12 × 0.11 mm
Z = 4

Data collection

Bruker Kappa Duo APEXII Diffractometer 3258 independent reflections
Radiation source: fine-focus sealed tube 2611 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.037
0.5° φ scans and ω scans θmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1997) h = −5→5
Tmin = 0.925, Tmax = 0.948 k = −15→15
15291 measured reflections l = −38→38

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0416P)2 + 0.370P] where P = (Fo2 + 2Fc2)/3
3258 reflections (Δ/σ)max = 0.001
181 parameters Δρmax = 0.30 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.42734 (11) 0.87066 (4) 0.446666 (14) 0.03559 (12)
Cl2 0.24634 (12) 0.61056 (4) 0.471571 (14) 0.04001 (13)
O1 0.1216 (3) 0.60873 (9) 0.19421 (4) 0.0295 (3)
O2 −0.4016 (3) 0.91508 (10) 0.20528 (4) 0.0370 (3)
C1 0.0018 (4) 0.66516 (13) 0.15546 (5) 0.0257 (3)
C2 −0.0674 (4) 0.62604 (13) 0.23556 (5) 0.0264 (3)
H2A 0.0689 0.5962 0.2625 0.032*
H2B −0.2815 0.5806 0.2330 0.032*
C3 −0.1530 (4) 0.75127 (12) 0.24381 (5) 0.0246 (3)
C4 −0.2625 (4) 0.82037 (13) 0.20229 (6) 0.0263 (3)
C5 −0.1875 (4) 0.76778 (13) 0.15740 (5) 0.0253 (3)
C6 −0.2890 (4) 0.82258 (14) 0.11584 (6) 0.0316 (4)
H6 −0.4186 0.8922 0.1166 0.038*
C7 −0.2037 (5) 0.77697 (16) 0.07401 (6) 0.0374 (4)
H7 −0.2737 0.8148 0.0461 0.045*
C8 −0.0143 (5) 0.67520 (16) 0.07285 (6) 0.0365 (4)
H8 0.0453 0.6437 0.0439 0.044*
C9 0.0882 (4) 0.61927 (14) 0.11313 (6) 0.0315 (3)
H9 0.2174 0.5496 0.1120 0.038*
C10 −0.1366 (4) 0.80455 (13) 0.28501 (5) 0.0269 (3)
H10 −0.1923 0.8848 0.2848 0.032*
C11 −0.0434 (4) 0.75431 (13) 0.33026 (5) 0.0253 (3)
C12 0.1296 (4) 0.82387 (13) 0.36316 (5) 0.0258 (3)
H12 0.1865 0.9015 0.3555 0.031*
C13 0.2187 (4) 0.78142 (13) 0.40650 (5) 0.0256 (3)
C14 0.1346 (4) 0.66795 (14) 0.41804 (5) 0.0263 (3)
C15 −0.0449 (4) 0.59937 (13) 0.38621 (6) 0.0275 (3)
H15 −0.1075 0.5226 0.3944 0.033*
C16 −0.1336 (4) 0.64150 (13) 0.34272 (5) 0.0261 (3)
H16 −0.2565 0.5936 0.3212 0.031*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0386 (2) 0.0369 (2) 0.0310 (2) −0.00723 (17) −0.00110 (17) −0.00681 (16)
Cl2 0.0470 (3) 0.0436 (3) 0.0291 (2) −0.00285 (19) −0.00218 (18) 0.00968 (17)
O1 0.0354 (6) 0.0268 (6) 0.0265 (6) 0.0085 (4) 0.0024 (5) 0.0026 (4)
O2 0.0447 (7) 0.0258 (6) 0.0400 (7) 0.0113 (5) −0.0050 (6) 0.0018 (5)
C1 0.0265 (7) 0.0234 (7) 0.0269 (8) −0.0051 (6) −0.0014 (6) 0.0021 (6)
C2 0.0314 (8) 0.0232 (7) 0.0245 (7) 0.0025 (6) 0.0013 (6) 0.0011 (6)
C3 0.0226 (7) 0.0227 (7) 0.0283 (8) 0.0016 (5) −0.0007 (6) 0.0020 (6)
C4 0.0247 (7) 0.0217 (7) 0.0321 (8) 0.0006 (6) −0.0032 (6) 0.0020 (6)
C5 0.0236 (7) 0.0240 (7) 0.0279 (8) −0.0047 (6) −0.0030 (6) 0.0034 (6)
C6 0.0283 (8) 0.0314 (8) 0.0348 (9) −0.0041 (6) −0.0046 (7) 0.0082 (7)
C7 0.0363 (9) 0.0467 (10) 0.0286 (9) −0.0110 (8) −0.0049 (7) 0.0108 (7)
C8 0.0387 (9) 0.0440 (10) 0.0271 (8) −0.0118 (8) 0.0044 (7) −0.0016 (7)
C9 0.0332 (8) 0.0298 (8) 0.0317 (9) −0.0066 (7) 0.0052 (7) −0.0013 (6)
C10 0.0262 (7) 0.0224 (7) 0.0322 (8) 0.0013 (6) 0.0014 (6) 0.0013 (6)
C11 0.0264 (7) 0.0232 (7) 0.0265 (8) 0.0030 (6) 0.0044 (6) −0.0008 (6)
C12 0.0282 (8) 0.0207 (7) 0.0287 (8) 0.0000 (6) 0.0052 (6) −0.0021 (6)
C13 0.0242 (7) 0.0266 (7) 0.0261 (8) −0.0008 (6) 0.0030 (6) −0.0038 (6)
C14 0.0258 (7) 0.0299 (8) 0.0233 (7) 0.0020 (6) 0.0036 (6) 0.0039 (6)
C15 0.0274 (8) 0.0224 (7) 0.0330 (8) −0.0016 (6) 0.0058 (6) 0.0021 (6)
C16 0.0257 (7) 0.0239 (7) 0.0287 (8) −0.0010 (6) 0.0020 (6) −0.0032 (6)

Geometric parameters (Å, º)

Cl1—C13 1.7330 (15) C7—C8 1.389 (3)
Cl2—C14 1.7256 (15) C7—H7 0.9500
O1—C1 1.3641 (18) C8—C9 1.378 (2)
O1—C2 1.4470 (19) C8—H8 0.9500
O2—C4 1.2243 (19) C9—H9 0.9500
C1—C9 1.389 (2) C10—C11 1.465 (2)
C1—C5 1.398 (2) C10—H10 0.9500
C2—C3 1.502 (2) C11—C16 1.398 (2)
C2—H2A 0.9900 C11—C12 1.400 (2)
C2—H2B 0.9900 C12—C13 1.379 (2)
C3—C10 1.341 (2) C12—H12 0.9500
C3—C4 1.491 (2) C13—C14 1.392 (2)
C4—C5 1.474 (2) C14—C15 1.385 (2)
C5—C6 1.402 (2) C15—C16 1.381 (2)
C6—C7 1.374 (3) C15—H15 0.9500
C6—H6 0.9500 C16—H16 0.9500
C1—O1—C2 116.35 (12) C9—C8—H8 119.6
O1—C1—C9 117.15 (14) C7—C8—H8 119.6
O1—C1—C5 122.42 (14) C8—C9—C1 119.71 (16)
C9—C1—C5 120.37 (15) C8—C9—H9 120.1
O1—C2—C3 112.89 (12) C1—C9—H9 120.1
O1—C2—H2A 109.0 C3—C10—C11 128.05 (14)
C3—C2—H2A 109.0 C3—C10—H10 116.0
O1—C2—H2B 109.0 C11—C10—H10 116.0
C3—C2—H2B 109.0 C16—C11—C12 118.51 (14)
H2A—C2—H2B 107.8 C16—C11—C10 122.76 (14)
C10—C3—C4 118.39 (13) C12—C11—C10 118.66 (13)
C10—C3—C2 125.29 (14) C13—C12—C11 121.01 (14)
C4—C3—C2 116.32 (13) C13—C12—H12 119.5
O2—C4—C5 122.25 (14) C11—C12—H12 119.5
O2—C4—C3 122.24 (15) C12—C13—C14 119.84 (14)
C5—C4—C3 115.51 (13) C12—C13—Cl1 119.77 (12)
C1—C5—C6 118.63 (15) C14—C13—Cl1 120.38 (12)
C1—C5—C4 120.50 (13) C15—C14—C13 119.66 (14)
C6—C5—C4 120.79 (14) C15—C14—Cl2 118.93 (12)
C7—C6—C5 120.90 (16) C13—C14—Cl2 121.41 (12)
C7—C6—H6 119.5 C16—C15—C14 120.64 (14)
C5—C6—H6 119.5 C16—C15—H15 119.7
C6—C7—C8 119.56 (16) C14—C15—H15 119.7
C6—C7—H7 120.2 C15—C16—C11 120.31 (14)
C8—C7—H7 120.2 C15—C16—H16 119.8
C9—C8—C7 120.82 (16) C11—C16—H16 119.8
C2—O1—C1—C9 −156.47 (14) C7—C8—C9—C1 −0.1 (2)
C2—O1—C1—C5 26.3 (2) O1—C1—C9—C8 −177.45 (14)
C1—O1—C2—C3 −46.21 (17) C5—C1—C9—C8 −0.2 (2)
O1—C2—C3—C10 −138.89 (16) C4—C3—C10—C11 178.67 (15)
O1—C2—C3—C4 40.74 (18) C2—C3—C10—C11 −1.7 (3)
C10—C3—C4—O2 −15.1 (2) C3—C10—C11—C16 −36.4 (2)
C2—C3—C4—O2 165.28 (15) C3—C10—C11—C12 146.59 (17)
C10—C3—C4—C5 164.10 (14) C16—C11—C12—C13 1.9 (2)
C2—C3—C4—C5 −15.56 (19) C10—C11—C12—C13 179.04 (14)
O1—C1—C5—C6 177.47 (13) C11—C12—C13—C14 −0.4 (2)
C9—C1—C5—C6 0.3 (2) C11—C12—C13—Cl1 −179.05 (12)
O1—C1—C5—C4 0.7 (2) C12—C13—C14—C15 −1.4 (2)
C9—C1—C5—C4 −176.41 (14) Cl1—C13—C14—C15 177.26 (12)
O2—C4—C5—C1 173.56 (15) C12—C13—C14—Cl2 179.08 (12)
C3—C4—C5—C1 −5.6 (2) Cl1—C13—C14—Cl2 −2.23 (19)
O2—C4—C5—C6 −3.1 (2) C13—C14—C15—C16 1.6 (2)
C3—C4—C5—C6 177.72 (14) Cl2—C14—C15—C16 −178.85 (12)
C1—C5—C6—C7 −0.3 (2) C14—C15—C16—C11 −0.1 (2)
C4—C5—C6—C7 176.48 (15) C12—C11—C16—C15 −1.7 (2)
C5—C6—C7—C8 0.0 (2) C10—C11—C16—C15 −178.69 (15)
C6—C7—C8—C9 0.2 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5252).

References

  1. Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  3. Gopaul, K., Shaikh, M., Ramjugernath, D., Koorbanally, N. A. & Omondi, B. (2012). Acta Cryst. E68, o1006. [DOI] [PMC free article] [PubMed]
  4. Kirkiacharian, B. S., Gomis, M., Tongo, H. G., Mahuteau, J. & Brion, J. D. (1984). Org. Magn. Reson. 22, 106–108.
  5. Sheldrick, G. M. (1997). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812040561/hg5252sup1.cif

e-68-o3062-sup1.cif (17.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812040561/hg5252Isup2.hkl

e-68-o3062-Isup2.hkl (159.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES