Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Oct 6;68(Pt 11):o3069. doi: 10.1107/S1600536812041189

1-Dodecyl-1H-benzo[d]imidazol-2(3H)-one

Dounia Belaziz a,*, Youssef Kandri Rodi a, Fouad Ouazzani Chahdi a, El Mokhtar Essassi b,c, Mohamed Saadi d, Lahcen El Ammari d
PMCID: PMC3515176  PMID: 23284403

Abstract

In the title compound, C19H30N2O, the fused ring system is essentially planar, the maximum deviation from the mean plane being 0.013 (2) Å for the N atom bearing the dodecyl chain. The 1-dodecyl group is almost perpendicular to the 1H-benzo[d]imidazol-2(3H)-one plane as indicated by the dihedral angle of 82.9 (2)°between planes through the fused ring system and the first three C atoms of the chain. The C—C—C—C torsion angles (about ±179°) of the dodecyl group indicate an anti­periplanar conformation. In the crystal, inversion dimers are formed by pairs of N—H⋯O hydrogen bonds.

Related literature  

For pharmacological and biochemical properties of benzimidazoles and their derivatives, see: Al Muhaimeed (1997); Scott et al. (2002); Nakano et al. (2000); Zhu et al. (2000); Zarrinmayeh et al. (1998). For compounds with closely related structures, see: Ouzidan et al. (2011); Kandri Rodi et al. (2011); Belaziz et al. (2012).graphic file with name e-68-o3069-scheme1.jpg

Experimental  

Crystal data  

  • C19H30N2O

  • M r = 302.45

  • Monoclinic, Inline graphic

  • a = 38.3223 (14) Å

  • b = 4.8318 (2) Å

  • c = 21.9831 (8) Å

  • β = 117.843 (2)°

  • V = 3599.3 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.47 × 0.31 × 0.14 mm

Data collection  

  • Bruker X8 APEX Diffractometer

  • 29002 measured reflections

  • 4637 independent reflections

  • 3179 reflections with I > 2σ(I)

  • R int = 0.028

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.141

  • S = 1.01

  • 4637 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536812041189/im2402sup1.cif

e-68-o3069-sup1.cif (27.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812041189/im2402Isup2.hkl

e-68-o3069-Isup2.hkl (222.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812041189/im2402Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 1.97 2.815 (1) 168

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

supplementary crystallographic information

Comment

Benzimidazoles and their derivatives exhibit a number of important pharmacological properties, such as antihistaminic (Al Muhaimeed, 1997) anti-ulcerative (Scott et al., 2002) and antiallergic (Nakano et al., 2000). In addition, benzimidazole derivatives are effective against the human cytomegalovirus (HCMV) (Zhu et al., 2000) and are also efficient selective neuropeptide Y Y1 receptor antagonists (Zarrinmayeh et al., 1998).

In a previous study, we reacted benzimidazol-2-one with octyl bromide in the presence of a catalytic quantity of tetra-n-butylammonium bromide under mild conditions to form 1-octyl-1H-benzo[d]imidazol-2(3H)-one (Belaziz et al., 2012). The study has been extended to the synthesis of a new benzimidazol-2-one derivative by action of dodecyl bromide with 1H-benzo[d]imidazol-2(3H)-one to form the title compound (Scheme 1).

The molecular structure of 1-dodecyl-1H-benzo[d]imidazol-2(3H)-one is built up from fused six-and five-membered rings linked to a C12H25 chain as shown in Fig. 1. The fused-ring system is essentially planar, with a maximum deviation of -0.013 (2) Å for N2. The dodecyl group is almost perpendicular to the 1H-benzo[d]imidazol-2(3H)-one plane as indicated by the dihedral angle between planes (C8 C9 C10) and (N1 N2 C1 to C7) of 82.9 (2)° and by the torsion angle (C7 N2 C8 C9) = -84.3 (2)°. In the crystal structure, inversion dimers are formed by N—H···O hydrogen bonds. in the way to form dimers (Fig. 2).

The structure of the title compound is almost identical to that observed for the following molecules: 1-nonyl-1H-benzimidazol-2(3H)-one, 1-octyl-1H-benzimidazol-2(3H)-one and 5-chloro-1-nonyl-1H-benzimidazol-2(3H)-one (Ouzidan et al., 2011, Kandri Rodi et al. 2011). Nevertheless, the different lengths of the chains leads to different unit cells with different crystal symmetry.

Experimental

To 1H-benzo[d]imidazol-2(3H)-one (0.2 g, 1.49 mmol), potassium carbonate (0.41 g, 2.98 mmol) and tetra-n-butylammonium bromide (0.05 g, 0.15 mmol) in DMF (15 ml) was added dodecyl bromide (0.30 ml, 1.78 mmol). Stirring was continued at room temperature for 6 h. The salt was removed by filtration and the filtrate concentrated under reduced pressure. The residue was separated by chromatography on a column of silica gel with ethyl acetate/hexane (1/2) as eluent (yield: 65%). The compound was recrystallized from hexan/acetate to give colourless crystals.

Refinement

H atoms were located in a difference map and treated as riding with N—H = 0.86 Å, C—H = 0.93 Å (aromatic), C—H = 0.97 Å (methylene) and C—H = 0.96 Å (methyl) with Uiso(H) = 1.2 Ueq (N—H, aromatic, methylene) and Uiso(H) = 1.5 Ueq(methyl).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small circles.

Fig. 2.

Fig. 2.

Inversion dimer with molecules linked by N—H···O hydrogen bonds.

Crystal data

C19H30N2O F(000) = 1328
Mr = 302.45 Dx = 1.116 Mg m3
Monoclinic, C2/c Melting point: 346.5 K
Hall symbol: -C 2yc Mo Kα radiation, λ = 0.71073 Å
a = 38.3223 (14) Å Cell parameters from 4637 reflections
b = 4.8318 (2) Å θ = 2.4–28.7°
c = 21.9831 (8) Å µ = 0.07 mm1
β = 117.843 (2)° T = 296 K
V = 3599.3 (2) Å3 Needle, colourless
Z = 8 0.47 × 0.31 × 0.14 mm

Data collection

Bruker X8 APEX Diffractometer 3179 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.028
Graphite monochromator θmax = 28.7°, θmin = 2.4°
φ and ω scans h = −51→51
29002 measured reflections k = −6→6
4637 independent reflections l = −29→28

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: difference Fourier map
wR(F2) = 0.141 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0721P)2 + 1.030P] where P = (Fo2 + 2Fc2)/3
4637 reflections (Δ/σ)max < 0.001
199 parameters Δρmax = 0.21 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N2 0.03233 (3) 0.5579 (2) 0.13178 (5) 0.0394 (2)
N1 −0.01601 (3) 0.7314 (2) 0.03782 (5) 0.0398 (2)
H1 −0.0289 0.8297 0.0014 0.048*
O1 0.04750 (2) 0.91076 (19) 0.07646 (4) 0.0472 (2)
C11 0.13888 (4) 0.6345 (3) 0.37748 (6) 0.0440 (3)
H11A 0.1187 0.6113 0.3920 0.053*
H11B 0.1428 0.8315 0.3747 0.053*
C7 −0.00182 (3) 0.4187 (2) 0.12105 (6) 0.0386 (3)
C9 0.08398 (3) 0.6105 (3) 0.25353 (6) 0.0431 (3)
H9A 0.0644 0.5596 0.2679 0.052*
H9B 0.0844 0.8108 0.2510 0.052*
C15 0.24328 (4) 0.5988 (3) 0.62951 (6) 0.0514 (3)
H15A 0.2457 0.7986 0.6294 0.062*
H15B 0.2233 0.5564 0.6435 0.062*
C12 0.17715 (4) 0.5077 (3) 0.43133 (6) 0.0484 (3)
H12A 0.1737 0.3089 0.4317 0.058*
H12B 0.1977 0.5418 0.4182 0.058*
C1 0.02366 (3) 0.7522 (2) 0.08097 (5) 0.0371 (3)
C13 0.19082 (4) 0.6180 (3) 0.50358 (6) 0.0498 (3)
H13A 0.1705 0.5816 0.5171 0.060*
H13B 0.1940 0.8170 0.5032 0.060*
C8 0.07235 (3) 0.4891 (3) 0.18297 (6) 0.0424 (3)
H8A 0.0906 0.5557 0.1671 0.051*
H8B 0.0749 0.2894 0.1870 0.051*
C2 −0.03246 (3) 0.5297 (2) 0.06114 (6) 0.0383 (3)
C10 0.12435 (4) 0.5075 (3) 0.30657 (6) 0.0463 (3)
H10A 0.1232 0.3081 0.3104 0.056*
H10B 0.1433 0.5476 0.2902 0.056*
C17 0.29647 (4) 0.5852 (3) 0.75462 (6) 0.0513 (3)
H17A 0.2983 0.7854 0.7541 0.062*
H17B 0.2769 0.5392 0.7693 0.062*
C14 0.22938 (4) 0.4922 (3) 0.55680 (6) 0.0517 (3)
H14A 0.2497 0.5298 0.5433 0.062*
H14B 0.2262 0.2930 0.5567 0.062*
C16 0.28233 (4) 0.4785 (3) 0.68205 (6) 0.0522 (3)
H16A 0.2798 0.2788 0.6823 0.063*
H16B 0.3022 0.5199 0.6678 0.063*
C6 −0.00851 (4) 0.2120 (3) 0.15747 (7) 0.0493 (3)
H6 0.0118 0.1406 0.1977 0.059*
C3 −0.07051 (4) 0.4301 (3) 0.03570 (7) 0.0490 (3)
H3 −0.0910 0.5015 −0.0044 0.059*
C5 −0.04689 (4) 0.1145 (3) 0.13174 (7) 0.0553 (4)
H5 −0.0524 −0.0248 0.1552 0.066*
C18 0.33590 (4) 0.4716 (3) 0.80666 (7) 0.0616 (4)
H18A 0.3555 0.5176 0.7921 0.074*
H18B 0.3341 0.2714 0.8072 0.074*
C19 0.34981 (5) 0.5790 (4) 0.87888 (7) 0.0774 (5)
H19A 0.3750 0.4990 0.9090 0.116*
H19B 0.3310 0.5294 0.8944 0.116*
H19C 0.3522 0.7768 0.8791 0.116*
C4 −0.07710 (4) 0.2207 (3) 0.07186 (8) 0.0554 (4)
H4 −0.1024 0.1494 0.0556 0.066*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N2 0.0357 (5) 0.0440 (5) 0.0272 (4) 0.0014 (4) 0.0053 (4) 0.0030 (4)
N1 0.0355 (5) 0.0458 (6) 0.0282 (4) 0.0032 (4) 0.0065 (4) 0.0038 (4)
O1 0.0404 (4) 0.0546 (5) 0.0378 (4) −0.0026 (4) 0.0110 (4) 0.0066 (4)
C11 0.0434 (6) 0.0463 (7) 0.0299 (5) −0.0011 (5) 0.0067 (5) 0.0014 (5)
C7 0.0416 (6) 0.0397 (6) 0.0304 (5) 0.0009 (5) 0.0134 (5) −0.0038 (4)
C9 0.0410 (6) 0.0450 (7) 0.0305 (6) 0.0040 (5) 0.0061 (5) 0.0011 (5)
C15 0.0462 (7) 0.0619 (8) 0.0314 (6) −0.0014 (6) 0.0057 (5) −0.0013 (5)
C12 0.0457 (7) 0.0524 (7) 0.0306 (6) 0.0017 (6) 0.0040 (5) −0.0013 (5)
C1 0.0373 (6) 0.0405 (6) 0.0267 (5) 0.0026 (5) 0.0092 (4) −0.0012 (4)
C13 0.0460 (7) 0.0582 (8) 0.0308 (6) −0.0006 (6) 0.0058 (5) −0.0010 (5)
C8 0.0366 (6) 0.0470 (7) 0.0302 (6) 0.0069 (5) 0.0044 (5) 0.0026 (5)
C2 0.0396 (6) 0.0404 (6) 0.0309 (5) 0.0014 (5) 0.0131 (5) −0.0049 (5)
C10 0.0432 (6) 0.0482 (7) 0.0300 (6) 0.0046 (5) 0.0025 (5) 0.0010 (5)
C17 0.0441 (7) 0.0647 (9) 0.0326 (6) −0.0039 (6) 0.0075 (5) −0.0003 (6)
C14 0.0478 (7) 0.0579 (8) 0.0314 (6) −0.0002 (6) 0.0034 (5) −0.0018 (5)
C16 0.0473 (7) 0.0597 (8) 0.0330 (6) −0.0001 (6) 0.0048 (5) −0.0016 (6)
C6 0.0591 (8) 0.0471 (7) 0.0393 (6) 0.0016 (6) 0.0210 (6) 0.0022 (5)
C3 0.0392 (6) 0.0564 (8) 0.0443 (7) −0.0002 (5) 0.0135 (5) −0.0078 (6)
C5 0.0690 (9) 0.0500 (8) 0.0572 (8) −0.0089 (7) 0.0382 (7) −0.0030 (6)
C18 0.0494 (8) 0.0736 (10) 0.0394 (7) 0.0005 (7) 0.0021 (6) 0.0011 (7)
C19 0.0585 (9) 0.1111 (14) 0.0367 (7) −0.0096 (9) 0.0006 (7) 0.0009 (8)
C4 0.0502 (8) 0.0569 (8) 0.0632 (9) −0.0117 (6) 0.0300 (7) −0.0127 (7)

Geometric parameters (Å, º)

N2—C1 1.3759 (15) C8—H8A 0.9700
N2—C7 1.3899 (15) C8—H8B 0.9700
N2—C8 1.4550 (14) C2—C3 1.3816 (17)
N1—C1 1.3688 (14) C10—H10A 0.9700
N1—C2 1.3827 (15) C10—H10B 0.9700
N1—H1 0.8600 C17—C18 1.5095 (18)
O1—C1 1.2314 (14) C17—C16 1.5156 (18)
C11—C10 1.5184 (16) C17—H17A 0.9700
C11—C12 1.5187 (16) C17—H17B 0.9700
C11—H11A 0.9700 C14—H14A 0.9700
C11—H11B 0.9700 C14—H14B 0.9700
C7—C6 1.3771 (18) C16—H16A 0.9700
C7—C2 1.3986 (16) C16—H16B 0.9700
C9—C8 1.5177 (16) C6—C5 1.3885 (19)
C9—C10 1.5218 (16) C6—H6 0.9300
C9—H9A 0.9700 C3—C4 1.381 (2)
C9—H9B 0.9700 C3—H3 0.9300
C15—C16 1.5157 (18) C5—C4 1.383 (2)
C15—C14 1.5195 (18) C5—H5 0.9300
C15—H15A 0.9700 C18—C19 1.511 (2)
C15—H15B 0.9700 C18—H18A 0.9700
C12—C13 1.5180 (17) C18—H18B 0.9700
C12—H12A 0.9700 C19—H19A 0.9600
C12—H12B 0.9700 C19—H19B 0.9600
C13—C14 1.5186 (17) C19—H19C 0.9600
C13—H13A 0.9700 C4—H4 0.9300
C13—H13B 0.9700
C1—N2—C7 109.94 (9) N1—C2—C7 106.97 (10)
C1—N2—C8 123.45 (10) C11—C10—C9 114.11 (11)
C7—N2—C8 126.15 (10) C11—C10—H10A 108.7
C1—N1—C2 110.23 (9) C9—C10—H10A 108.7
C1—N1—H1 124.9 C11—C10—H10B 108.7
C2—N1—H1 124.9 C9—C10—H10B 108.7
C10—C11—C12 113.25 (11) H10A—C10—H10B 107.6
C10—C11—H11A 108.9 C18—C17—C16 114.41 (12)
C12—C11—H11A 108.9 C18—C17—H17A 108.7
C10—C11—H11B 108.9 C16—C17—H17A 108.7
C12—C11—H11B 108.9 C18—C17—H17B 108.7
H11A—C11—H11B 107.7 C16—C17—H17B 108.7
C6—C7—N2 131.94 (11) H17A—C17—H17B 107.6
C6—C7—C2 121.55 (11) C13—C14—C15 114.31 (12)
N2—C7—C2 106.51 (10) C13—C14—H14A 108.7
C8—C9—C10 111.39 (10) C15—C14—H14A 108.7
C8—C9—H9A 109.3 C13—C14—H14B 108.7
C10—C9—H9A 109.3 C15—C14—H14B 108.7
C8—C9—H9B 109.3 H14A—C14—H14B 107.6
C10—C9—H9B 109.3 C17—C16—C15 114.33 (12)
H9A—C9—H9B 108.0 C17—C16—H16A 108.7
C16—C15—C14 114.07 (12) C15—C16—H16A 108.7
C16—C15—H15A 108.7 C17—C16—H16B 108.7
C14—C15—H15A 108.7 C15—C16—H16B 108.7
C16—C15—H15B 108.7 H16A—C16—H16B 107.6
C14—C15—H15B 108.7 C7—C6—C5 117.30 (12)
H15A—C15—H15B 107.6 C7—C6—H6 121.3
C13—C12—C11 114.18 (11) C5—C6—H6 121.3
C13—C12—H12A 108.7 C4—C3—C2 117.68 (12)
C11—C12—H12A 108.7 C4—C3—H3 121.2
C13—C12—H12B 108.7 C2—C3—H3 121.2
C11—C12—H12B 108.7 C4—C5—C6 121.22 (13)
H12A—C12—H12B 107.6 C4—C5—H5 119.4
O1—C1—N1 127.98 (10) C6—C5—H5 119.4
O1—C1—N2 125.67 (10) C17—C18—C19 114.10 (14)
N1—C1—N2 106.35 (10) C17—C18—H18A 108.7
C12—C13—C14 113.68 (12) C19—C18—H18A 108.7
C12—C13—H13A 108.8 C17—C18—H18B 108.7
C14—C13—H13A 108.8 C19—C18—H18B 108.7
C12—C13—H13B 108.8 H18A—C18—H18B 107.6
C14—C13—H13B 108.8 C18—C19—H19A 109.5
H13A—C13—H13B 107.7 C18—C19—H19B 109.5
N2—C8—C9 113.73 (10) H19A—C19—H19B 109.5
N2—C8—H8A 108.8 C18—C19—H19C 109.5
C9—C8—H8A 108.8 H19A—C19—H19C 109.5
N2—C8—H8B 108.8 H19B—C19—H19C 109.5
C9—C8—H8B 108.8 C3—C4—C5 121.52 (13)
H8A—C8—H8B 107.7 C3—C4—H4 119.2
C3—C2—N1 132.32 (11) C5—C4—H4 119.2
C3—C2—C7 120.71 (12)
C1—N2—C7—C6 −179.18 (12) N2—C7—C2—C3 178.75 (10)
C8—N2—C7—C6 8.5 (2) C6—C7—C2—N1 179.65 (10)
C1—N2—C7—C2 0.61 (13) N2—C7—C2—N1 −0.17 (12)
C8—N2—C7—C2 −171.76 (10) C12—C11—C10—C9 174.05 (11)
C10—C11—C12—C13 −176.14 (11) C8—C9—C10—C11 176.53 (11)
C2—N1—C1—O1 −179.33 (11) C12—C13—C14—C15 −179.52 (12)
C2—N1—C1—N2 0.70 (12) C16—C15—C14—C13 −178.39 (12)
C7—N2—C1—O1 179.22 (11) C18—C17—C16—C15 −178.41 (13)
C8—N2—C1—O1 −8.16 (18) C14—C15—C16—C17 179.67 (12)
C7—N2—C1—N1 −0.81 (12) N2—C7—C6—C5 −179.26 (12)
C8—N2—C1—N1 171.81 (10) C2—C7—C6—C5 0.99 (18)
C11—C12—C13—C14 −179.29 (11) N1—C2—C3—C4 179.30 (12)
C1—N2—C8—C9 104.30 (13) C7—C2—C3—C4 0.70 (18)
C7—N2—C8—C9 −84.31 (15) C7—C6—C5—C4 0.1 (2)
C10—C9—C8—N2 174.01 (10) C16—C17—C18—C19 179.99 (13)
C1—N1—C2—C3 −179.08 (12) C2—C3—C4—C5 0.4 (2)
C1—N1—C2—C7 −0.33 (13) C6—C5—C4—C3 −0.9 (2)
C6—C7—C2—C3 −1.43 (18)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.86 1.97 2.815 (1) 168

Symmetry code: (i) −x, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2402).

References

  1. Al Muhaimeed, H. (1997). J. Int. Med. Res. 25, 175–181. [DOI] [PubMed]
  2. Belaziz, D., Kandri Rodi, Y., Essassi, E. M. & El Ammari, L. (2012). Acta Cryst. E68, o1276. [DOI] [PMC free article] [PubMed]
  3. Bruker (2005). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Kandri Rodi, Y., Ouazzani Chahdi, F., Essassi, E. M., Luis, S. V., Bolte, M. & El Ammari, L. (2011). Acta Cryst. E67, o3340–o3341. [DOI] [PMC free article] [PubMed]
  6. Nakano, H., Inoue, T., Kawasaki, N., Miyataka, H., Matsumoto, H., Taguchi, T., Inagaki, N., Nagai, H. & Satoh, T. (2000). Bioorg. Med. Chem. 8, 373–380. [DOI] [PubMed]
  7. Ouzidan, Y., Kandri Rodi, Y., Butcher, R. J., Essassi, E. M. & El Ammari, L. (2011). Acta Cryst. E67, o283. [DOI] [PMC free article] [PubMed]
  8. Scott, L. J., Dunn, C. J., Mallarkey, G. & Sharpe, M. (2002). Drugs, 62, 1503–1538. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  12. Zarrinmayeh, H., Nunes, A. M., Ornstein, P. L., Zimmerman, D. M., Arnold, M. B., Schober, D. A., Gackenheimer, S. L., Bruns, R. F., Hipskind, P. A., Britton, T. C., Cantrell, B. E. & Gehlert, D. R. (1998). J. Med. Chem. 41, 2709–2719. [DOI] [PubMed]
  13. Zhu, Z., Lippa, B., Drach, J. C. & Townsend, L. B. (2000). J. Med. Chem. 43, 2430–2437. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536812041189/im2402sup1.cif

e-68-o3069-sup1.cif (27.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812041189/im2402Isup2.hkl

e-68-o3069-Isup2.hkl (222.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812041189/im2402Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES