Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Oct 6;68(Pt 11):o3073. doi: 10.1107/S160053681204007X

Diphenyl(pyridin-2-yl)­phosphane selenide

Wade L Davis a, Alfred Muller a,*
PMCID: PMC3515180  PMID: 23284407

Abstract

In the title compound, C17H14NPSe, the P atom has a distorted tetra­hedral environment resulting in an effective cone angle of 163°. In the crystal, C—H⋯Se/N/π inter­actions are observed.

Related literature  

For background to phospho­rus- and selenium-containing ligands, see: Muller et al. (2006, 2008). For the free phosphine of the title compound, see: Charland et al. (1989). For background on cone angles, see: Otto (2001); Tolman (1977). For details of the conformational fit of the two mol­ecules using Mercury, see: Macrae et al. (2008); Weng et al. (2008a ,b ).graphic file with name e-68-o3073-scheme1.jpg

Experimental  

Crystal data  

  • C17H14NPSe

  • M r = 342.22

  • Orthorhombic, Inline graphic

  • a = 8.8092 (4) Å

  • b = 9.4066 (4) Å

  • c = 18.2661 (7) Å

  • V = 1513.61 (11) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 4.25 mm−1

  • T = 100 K

  • 0.24 × 0.17 × 0.12 mm

Data collection  

  • Bruker APEX DUO 4K-CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.429, T max = 0.629

  • 6004 measured reflections

  • 2501 independent reflections

  • 2461 reflections with I > 2σ(I)

  • R int = 0.025

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.021

  • wR(F 2) = 0.053

  • S = 0.87

  • 2501 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.27 e Å−3

  • Absolute structure: Flack (1983), with 992 Friedel pairs

  • Flack parameter: 0.053 (19)

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010) and WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681204007X/kp2438sup1.cif

e-68-o3073-sup1.cif (18.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681204007X/kp2438Isup2.hkl

e-68-o3073-Isup2.hkl (120.4KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681204007X/kp2438Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯Se1 0.95 2.87 3.427 (3) 118
C8—H8⋯N1 0.95 2.57 3.111 (3) 116
C14—H14⋯Se1 0.95 2.96 3.472 (2) 115
C5—H5⋯Se1i 0.95 3.07 3.923 (3) 150
C16—H16⋯Se1ii 0.95 3.26 3.938 (3) 130
C11—H11⋯Cg1iii 0.95 2.77 3.630 (3) 151

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

Financial assistance from the Research Fund of the University of Johannesburg is gratefully acknowledged.

supplementary crystallographic information

Comment

As part our systematic investigation on the steric and electronic properties of phosphorus containing ligands, we are also utilizing the 1J(31P-77Se) multi-nuclear NMR coupling in Se—P bond as a probe (see Muller et al., 2008). The advantage of this approach is that there is no steric crowding effect, albeit crystal packing effects, as normally found in transition metal complexes with bulky ligands, e.g. in trans-[Rh(CO)Cl{P(OC6H5)3}2] cone angles variation from 156° to 167° was observed for the two phosphite ligands (Muller et al., 2006). Herein we report here the single-crystal structure of SePPh2py, where Ph = C6H5 and py = C5H4N as part of our investigation.

Molecules of the title compound (Fig. 1) adopts a distorted tetrahedral arrangement about the P atom with average C—P—C and Se—P—C angles of 105.47° and 113.20° respectively. Describing the steric demand of phosphane ligands has been the topic of many studies and a variety of models have been developed. The Tolman cone angle (Tolman, 1977) is still the most commonly used model. Applying this model to the geometry obtained for the title compound (and adjusting the Se—P bond distance to 2.28 Å) we calculated an effective cone angle from the geometry found in the crystal structure of 163° (Otto, 2001). The angle calculated is 9° larger than that of the free phosphine (Charland et al., 1989; effective cone angle calculated as 154°), and could be ascribed to C—H···Se/N/π intra- and interactions observed in the title compound (Table 1, Fig. 2), whereas the free phosphine shows C—H···N/π interactions only. The difference in the orientation of the substituents for these two structures can be illustrated by superimposing their coordinates (Fig. 3); root mean squared deviation calculated as 0.0468 Å for P and ipso C atoms only using Mercury (Macrae et al., 2008; Weng et al., 2008a,b).

Experimental

Diphenyl-2-pyridylphosphine and KSeCN were purchased from Sigma–Aldrich and used without purification. Eqimolar amounts of KSeCN (5.8 mg, 0.04 mmol) and the diphenylpyridylphosphine (10.5 mg, 0.04 mmol) were dissolved in the minimum amounts of methanol (10 ml). The KSeCN solution was added dropwise (5 min) to the phosphine solution with stirring at room temperature. The final solution was left to evaporate slowly until dry to give crystals suitable for a single-crystal X-ray study. Analytical data: 31P {H} NMR (CDCl3, 161.99 MHz): δ = 31.47 (t, 1J(31P-77Se) = 734 Hz).

Refinement

The aromatic H atoms were placed in geometrically idealized positions with C—H = 0.95 Å, and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

A view of (1). Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Packing diagram of (1) showing the C—H···Se/N/π interactions.

Fig. 3.

Fig. 3.

Conformational similarity between the title compound (black) and the free phosphine (red).

Crystal data

C17H14NPSe F(000) = 688
Mr = 342.22 Dx = 1.502 Mg m3
Orthorhombic, P212121 Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2ab Cell parameters from 5093 reflections
a = 8.8092 (4) Å θ = 4.8–66.6°
b = 9.4066 (4) Å µ = 4.25 mm1
c = 18.2661 (7) Å T = 100 K
V = 1513.61 (11) Å3 Cuboid, colourless
Z = 4 0.24 × 0.17 × 0.12 mm

Data collection

Bruker APEX DUO 4K-CCD diffractometer 2501 independent reflections
Incoatec Quazar Multilayer Mirror monochromator 2461 reflections with I > 2σ(I)
Detector resolution: 8.4 pixels mm-1 Rint = 0.025
φ and ω scans θmax = 66.6°, θmin = 4.8°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −9→10
Tmin = 0.429, Tmax = 0.629 k = −3→11
6004 measured reflections l = −21→20

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021 H-atom parameters constrained
wR(F2) = 0.053 w = 1/[σ2(Fo2) + (0.0288P)2 + 1.1995P] where P = (Fo2 + 2Fc2)/3
S = 0.87 (Δ/σ)max < 0.001
2501 reflections Δρmax = 0.43 e Å3
181 parameters Δρmin = −0.27 e Å3
0 restraints Absolute structure: Flack (1983), with 992 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.053 (19)

Special details

Experimental. The intensity data was collected on a Bruker Apex DUO 4 K CCD diffractometer using an exposure time of 5 s/frame. A total of 287 frames were collected with a frame width of 4° covering up to θ = 66.62° with 96.7% completeness accomplished.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Se1 0.16691 (3) 0.13803 (3) 0.059243 (13) 0.01846 (8)
P1 0.28195 (7) −0.00265 (7) 0.12974 (3) 0.01351 (13)
N1 0.5564 (3) −0.0376 (2) 0.19118 (12) 0.0211 (5)
C1 0.2066 (3) −0.0007 (3) 0.22196 (12) 0.0155 (5)
C2 0.2524 (3) 0.1080 (3) 0.26909 (13) 0.0222 (6)
H2 0.3282 0.1737 0.2541 0.027*
C3 0.1867 (3) 0.1197 (3) 0.33781 (14) 0.0279 (6)
H3 0.2185 0.1927 0.3703 0.034*
C4 0.0749 (3) 0.0250 (3) 0.35923 (14) 0.0271 (6)
H4 0.0292 0.0341 0.4061 0.033*
C5 0.0295 (3) −0.0826 (3) 0.31256 (14) 0.0226 (6)
H5 −0.0465 −0.1479 0.3276 0.027*
C6 0.0953 (3) −0.0952 (3) 0.24349 (14) 0.0192 (6)
H6 0.0636 −0.1687 0.2113 0.023*
C7 0.2834 (3) −0.1863 (3) 0.09839 (13) 0.0165 (5)
C12 0.2168 (3) −0.2192 (3) 0.03143 (13) 0.0218 (6)
H12 0.1654 −0.1481 0.0041 0.026*
C11 0.2266 (3) −0.3580 (3) 0.00496 (13) 0.0257 (6)
H11 0.1802 −0.382 −0.0403 0.031*
C10 0.3034 (3) −0.4608 (3) 0.04429 (14) 0.0249 (6)
H10 0.3129 −0.5543 0.0252 0.03*
C9 0.3666 (3) −0.4276 (3) 0.11135 (15) 0.0271 (6)
H9 0.417 −0.499 0.1389 0.033*
C8 0.3567 (3) −0.2906 (3) 0.13858 (14) 0.0216 (6)
H8 0.4001 −0.2681 0.1848 0.026*
C13 0.4816 (3) 0.0441 (3) 0.14240 (13) 0.0153 (5)
C17 0.7046 (3) −0.0092 (3) 0.20170 (14) 0.0222 (6)
H17 0.7597 −0.0657 0.2356 0.027*
C16 0.7802 (3) 0.0985 (3) 0.16541 (14) 0.0203 (6)
H16 0.8851 0.1146 0.1741 0.024*
C15 0.7021 (3) 0.1817 (3) 0.11670 (14) 0.0221 (6)
H15 0.7518 0.2571 0.0917 0.026*
C14 0.5494 (3) 0.1544 (3) 0.10432 (13) 0.0193 (5)
H14 0.4928 0.21 0.0706 0.023*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Se1 0.01952 (13) 0.01885 (13) 0.01701 (12) 0.00321 (11) −0.00156 (10) 0.00276 (10)
P1 0.0138 (3) 0.0140 (3) 0.0127 (3) 0.0002 (3) 0.0005 (2) 0.0005 (2)
N1 0.0168 (11) 0.0207 (12) 0.0257 (11) 0.0009 (9) −0.0010 (9) 0.0027 (9)
C1 0.0160 (13) 0.0164 (12) 0.0142 (10) 0.0031 (11) −0.0007 (9) 0.0023 (9)
C2 0.0217 (14) 0.0247 (16) 0.0201 (13) −0.0027 (11) 0.0031 (10) −0.0015 (10)
C3 0.0336 (16) 0.0306 (15) 0.0196 (13) 0.0013 (15) 0.0005 (11) −0.0057 (11)
C4 0.0285 (16) 0.0351 (17) 0.0178 (13) 0.0114 (13) 0.0059 (11) 0.0033 (11)
C5 0.0170 (13) 0.0280 (15) 0.0229 (13) 0.0036 (11) 0.0054 (11) 0.0099 (11)
C6 0.0185 (13) 0.0200 (15) 0.0193 (12) 0.0024 (11) −0.0020 (10) 0.0028 (10)
C7 0.0141 (12) 0.0161 (13) 0.0194 (12) −0.0012 (10) 0.0058 (10) −0.0019 (9)
C12 0.0256 (13) 0.0230 (14) 0.0167 (12) −0.0026 (12) 0.0021 (10) 0.0000 (10)
C11 0.0360 (14) 0.0233 (13) 0.0176 (12) −0.0096 (14) 0.0010 (11) −0.0032 (11)
C10 0.0329 (16) 0.0172 (13) 0.0246 (13) −0.0034 (11) 0.0103 (11) −0.0040 (10)
C9 0.0273 (17) 0.0213 (14) 0.0327 (15) 0.0037 (12) 0.0009 (12) 0.0000 (11)
C8 0.0216 (14) 0.0233 (13) 0.0199 (12) −0.0015 (12) −0.0043 (11) −0.0036 (10)
C13 0.0142 (12) 0.0168 (13) 0.0149 (11) 0.0028 (10) 0.0030 (9) −0.0026 (9)
C17 0.0210 (14) 0.0206 (13) 0.0250 (13) −0.0015 (13) −0.0041 (10) 0.0007 (11)
C16 0.0140 (12) 0.0222 (15) 0.0248 (13) −0.0042 (11) 0.0014 (10) −0.0057 (10)
C15 0.0191 (14) 0.0244 (14) 0.0227 (12) −0.0061 (11) 0.0025 (10) 0.0026 (10)
C14 0.0185 (12) 0.0213 (14) 0.0179 (12) 0.0000 (12) −0.0007 (9) 0.0002 (10)

Geometric parameters (Å, º)

Se1—P1 2.1063 (6) C7—C12 1.391 (3)
P1—C1 1.811 (2) C12—C11 1.395 (4)
P1—C7 1.820 (2) C12—H12 0.95
P1—C13 1.828 (3) C11—C10 1.381 (4)
N1—C13 1.349 (3) C11—H11 0.95
N1—C17 1.347 (3) C10—C9 1.381 (4)
C1—C6 1.380 (4) C10—H10 0.95
C1—C2 1.397 (4) C9—C8 1.384 (4)
C2—C3 1.387 (4) C9—H9 0.95
C2—H2 0.95 C8—H8 0.95
C3—C4 1.384 (4) C13—C14 1.384 (4)
C3—H3 0.95 C17—C16 1.381 (4)
C4—C5 1.382 (4) C17—H17 0.95
C4—H4 0.95 C16—C15 1.370 (4)
C5—C6 1.393 (4) C16—H16 0.95
C5—H5 0.95 C15—C14 1.388 (4)
C6—H6 0.95 C15—H15 0.95
C7—C8 1.385 (4) C14—H14 0.95
C1—P1—C7 107.75 (11) C7—C12—H12 120.4
C1—P1—C13 103.46 (11) C11—C12—H12 120.4
C7—P1—C13 105.15 (11) C10—C11—C12 120.3 (2)
C1—P1—Se1 112.71 (8) C10—C11—H11 119.8
C7—P1—Se1 114.04 (9) C12—C11—H11 119.8
C13—P1—Se1 112.90 (8) C11—C10—C9 120.0 (2)
C13—N1—C17 117.0 (2) C11—C10—H10 120
C6—C1—C2 120.1 (2) C9—C10—H10 120
C6—C1—P1 121.27 (19) C10—C9—C8 120.3 (3)
C2—C1—P1 118.34 (19) C10—C9—H9 119.9
C3—C2—C1 119.7 (2) C8—C9—H9 119.9
C3—C2—H2 120.2 C7—C8—C9 119.9 (2)
C1—C2—H2 120.2 C7—C8—H8 120.1
C4—C3—C2 120.2 (3) C9—C8—H8 120.1
C4—C3—H3 119.9 N1—C13—C14 123.3 (2)
C2—C3—H3 119.9 N1—C13—P1 114.59 (18)
C3—C4—C5 120.1 (2) C14—C13—P1 122.12 (19)
C3—C4—H4 119.9 N1—C17—C16 123.0 (2)
C5—C4—H4 119.9 N1—C17—H17 118.5
C4—C5—C6 120.1 (3) C16—C17—H17 118.5
C4—C5—H5 120 C15—C16—C17 119.2 (2)
C6—C5—H5 120 C15—C16—H16 120.4
C1—C6—C5 119.9 (2) C17—C16—H16 120.4
C1—C6—H6 120.1 C16—C15—C14 119.1 (2)
C5—C6—H6 120.1 C16—C15—H15 120.4
C8—C7—C12 120.3 (2) C14—C15—H15 120.4
C8—C7—P1 120.58 (19) C13—C14—C15 118.3 (2)
C12—C7—P1 119.0 (2) C13—C14—H14 120.8
C7—C12—C11 119.1 (3) C15—C14—H14 120.8
C7—P1—C1—C6 −34.1 (2) P1—C7—C12—C11 175.8 (2)
C13—P1—C1—C6 −145.1 (2) C7—C12—C11—C10 −1.0 (4)
Se1—P1—C1—C6 92.6 (2) C12—C11—C10—C9 2.2 (4)
C7—P1—C1—C2 152.3 (2) C11—C10—C9—C8 −1.7 (4)
C13—P1—C1—C2 41.3 (2) C12—C7—C8—C9 1.4 (4)
Se1—P1—C1—C2 −81.0 (2) P1—C7—C8—C9 −175.2 (2)
C6—C1—C2—C3 0.7 (4) C10—C9—C8—C7 −0.1 (4)
P1—C1—C2—C3 174.4 (2) C17—N1—C13—C14 −0.7 (4)
C1—C2—C3—C4 −0.8 (4) C17—N1—C13—P1 178.94 (19)
C2—C3—C4—C5 0.8 (4) C1—P1—C13—N1 53.4 (2)
C3—C4—C5—C6 −0.6 (4) C7—P1—C13—N1 −59.5 (2)
C2—C1—C6—C5 −0.5 (4) Se1—P1—C13—N1 175.59 (16)
P1—C1—C6—C5 −174.0 (2) C1—P1—C13—C14 −126.9 (2)
C4—C5—C6—C1 0.5 (4) C7—P1—C13—C14 120.2 (2)
C1—P1—C7—C8 −55.0 (2) Se1—P1—C13—C14 −4.7 (2)
C13—P1—C7—C8 54.9 (2) C13—N1—C17—C16 0.3 (4)
Se1—P1—C7—C8 179.09 (18) N1—C17—C16—C15 0.5 (4)
C1—P1—C7—C12 128.4 (2) C17—C16—C15—C14 −0.9 (4)
C13—P1—C7—C12 −121.7 (2) N1—C13—C14—C15 0.4 (4)
Se1—P1—C7—C12 2.5 (2) P1—C13—C14—C15 −179.30 (19)
C8—C7—C12—C11 −0.8 (4) C16—C15—C14—C13 0.5 (4)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C1–C6 ring.

D—H···A D—H H···A D···A D—H···A
C12—H12···Se1 0.95 2.87 3.427 (3) 118
C8—H8···N1 0.95 2.57 3.111 (3) 116
C14—H14···Se1 0.95 2.96 3.472 (2) 115
C5—H5···Se1i 0.95 3.07 3.923 (3) 150
C16—H16···Se1ii 0.95 3.26 3.938 (3) 130
C11—H11···Cg1iii 0.95 2.77 3.630 (3) 151

Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) x+1, y, z; (iii) x−1/2, −y−1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2438).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2008). SADABS, SAINT and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2011). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Charland, J.-P., Roustan, J.-L. & Ansari, N. (1989). Acta Cryst. C45, 680–681.
  6. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  7. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  8. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  9. Muller, A., Meijboom, R. & Roodt, A. (2006). J. Organomet. Chem. 691, 5794–5801.
  10. Muller, A., Otto, S. & Roodt, A. (2008). Dalton Trans. pp. 650–657. [DOI] [PubMed]
  11. Otto, S. (2001). Acta Cryst. C57, 793–795. [DOI] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Tolman, C. A. (1977). Chem. Rev. 77, 313–348.
  14. Weng, Z. F., Motherwell, W. D. S., Allen, F. H. & Cole, J. M. (2008a). Acta Cryst. B64, 348–362. [DOI] [PubMed]
  15. Weng, Z. F., Motherwell, W. D. S. & Cole, J. M. (2008b). J. Appl. Cryst. 41, 955–957.
  16. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681204007X/kp2438sup1.cif

e-68-o3073-sup1.cif (18.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681204007X/kp2438Isup2.hkl

e-68-o3073-Isup2.hkl (120.4KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681204007X/kp2438Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES