Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Oct 6;68(Pt 11):o3088. doi: 10.1107/S1600536812040858

2,5-Dimethyl-N-[1-(1H-pyrrol-2-yl)ethyl­idene]aniline

Bi-Yun Su a,*, Wen-Long Qin b, Jia-Xiang Wang a
PMCID: PMC3515192  PMID: 23284419

Abstract

In the title compound, C14H16N2, the pyrrole and benzene rings form a dihedral angle of 72.37 (8)°. In the crystal, centrosymmetrically related mol­ecules are assembled into dimers by by pairs of N—H⋯N hydrogen bonds, generating rings of R 2 2(10) graph-set motif. C—H⋯π inter­actions also occur.

Related literature  

For general background to the imino­pyrrole unit, see: Britovsek et al. (2003); Dawson et al. (2000); Wu et al. (2003). For the pyrrole diimine unit, see: Matsuo et al. (2001) and for the pyrrole monoimine unit, see: He et al. (2009); Su et al. (2009a ,b ). graphic file with name e-68-o3088-scheme1.jpg

Experimental  

Crystal data  

  • C14H16N2

  • M r = 212.29

  • Monoclinic, Inline graphic

  • a = 12.5894 (17) Å

  • b = 7.3109 (10) Å

  • c = 14.8425 (19) Å

  • β = 113.118 (2)°

  • V = 1256.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.37 × 0.28 × 0.15 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.976, T max = 0.990

  • 6463 measured reflections

  • 2441 independent reflections

  • 1885 reflections with I > 2σ(I)

  • R int = 0.021

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.156

  • S = 0.96

  • 2441 reflections

  • 149 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: APEX2 (Bruker,2008); cell refinement: SAINT (Bruker,2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812040858/rz5010sup1.cif

e-68-o3088-sup1.cif (16.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812040858/rz5010Isup2.hkl

e-68-o3088-Isup2.hkl (120KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812040858/rz5010Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2i 0.86 2.34 3.1354 (18) 155
C1—H1ACg1i 0.93 2.65 3.4298 (16) 142

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the Natural Science Basic Research Plan of Shaanxi Province (No. 2009JQ2006) and the Scientific Research Plan Project of Shaanxi Education Department (Nos. 12 J K0620 and 2010 J K784).

supplementary crystallographic information

Comment

Bis(imino)pyrrole is usually prepared from Schiff bases condensation of 2,5-diacetylpyrrole and the aromatic amine (Matsuo et al., 2001). Schiff bases containing pyrrole units have been extensively investigated because of their excellent and flexible coordination abilities (Wu et al., 2003). As the five-memberd ring substitute of pyridine six-memberd ring (Matsuo et al., 2001; He et al., 2009), pyrrole has been frequently introduced into the skeleton of the bis(imino)pyridine ligand to design new ligands and corresponding metal complexes as catalysts of olefin polymerizations (Britovsek et al., 2003; Dawson et al., 2000). As a part of our studies on mono(imino)pyrrole ligands (Su et al., 2009a,b), the crystal structure of the title compound is reported here.

The X-ray analysis of the title compound (Fig. 1) shows that the molecule is non-planar, with a dihedral angle of 72.37 (8)° formed by the pyrrole and benzene rings. The imino N—C bond length (1.288 (2) Å) indicates a C═N double bond character. In the crystal (Fig. 2), a pair of classical N–H···N hydrogen bonds (Table 1) link centrosymmetrically related molecules into a dimer, generating a ring of R22(10) graph-set motif. The dimer is further enforced by C—H···π hydrogen interactions.

Experimental

The reagents 2-acetyl pyrrole (0.1528 g, 1.40 mmol) and 2,5-dimethylaniline (0.3393 g, 2.80 mmol) were placed in a 50-ml flask. A few drops of acetic acid was then added in, and the mixture was subjected to radiation in a 800 W microwave oven for 3 min and 2 min on a medium–heat setting. The reaction was monitored by TLC, and the crude product was purified by silica gel column chromatography (eluant: petroleum ether/ethyl acetate, 5:1 v/v). Plate-like colourless single crystals used in X-ray diffraction studies were grown from an ethanolic solution by slow evaporation of the solvent at room temperature; yield 72.79%, 0.2982 g. M.p. 396.8–398.4 K. The purity and the composition of the compound were checked and characterized by IR, 1H NMR, mass spectrum, as well as elemental analysis. IR (KBr): νC=N 1659 cm-1. 1H NMR (400 MHz, CDCl3): δ 7.12 (d, 1H, benzene ring aromatic H), δ 7.09 (d, 1H, benzene ring aromatic H), 6.88 (m, 1H, benzene ring aromatic H), 6.56 (d, 1H, pyrrole ring aromatic H), 6.37 (s, 1H, pyrrole ring aromatic H), 6.18 (d, 1H, pyrrole ring aromatic H), 2.18 (s, 6H, phenyl-CH3), 2.05 (s, 3H, –N=C(CH3)-). MS (EI): m/z 212 (M). Anal. Calcd. for C14H16N2: C, 79.21; H, 7.60; N, 13.20. Found: C, 79.72; H, 7.13; N, 12.84.

Refinement

All H atoms were placed at calculated positions and refined as riding, with C—H = 0.93–0.96 Å, N—H = 0.86 Å, and with Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

The crystal packing of the title compound viewed down the a axis, with hydrogen bond is shown as dashed lines.

Crystal data

C14H16N2 F(000) = 456
Mr = 212.29 Dx = 1.122 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 2093 reflections
a = 12.5894 (17) Å θ = 2.7–26.0°
b = 7.3109 (10) Å µ = 0.07 mm1
c = 14.8425 (19) Å T = 296 K
β = 113.118 (2)° Block, colourless
V = 1256.4 (3) Å3 0.37 × 0.28 × 0.15 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 2441 independent reflections
Radiation source: fine-focus sealed tube 1885 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.021
φ and ω scans θmax = 26.0°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −15→13
Tmin = 0.976, Tmax = 0.990 k = −8→8
6463 measured reflections l = −18→15

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045 H-atom parameters constrained
wR(F2) = 0.156 w = 1/[σ2(Fo2) + (0.1P)2 + 0.1684P] where P = (Fo2 + 2Fc2)/3
S = 0.96 (Δ/σ)max = 0.001
2441 reflections Δρmax = 0.22 e Å3
149 parameters Δρmin = −0.16 e Å3
0 restraints Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.030 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.02765 (11) 0.93936 (18) 0.15136 (9) 0.0509 (4)
H1 −0.0111 0.9621 0.0903 0.061*
N2 0.16704 (11) 0.92217 (17) 0.04350 (9) 0.0493 (4)
C1 −0.01726 (14) 0.9302 (2) 0.22049 (12) 0.0556 (5)
H1A −0.0944 0.9481 0.2098 0.067*
C2 0.06832 (16) 0.8908 (2) 0.30727 (13) 0.0606 (5)
H2 0.0608 0.8759 0.3667 0.073*
C3 0.17118 (15) 0.8764 (2) 0.29152 (12) 0.0572 (5)
H3 0.2441 0.8510 0.3388 0.069*
C4 0.14446 (13) 0.90679 (19) 0.19355 (11) 0.0447 (4)
C5 0.21617 (12) 0.90262 (18) 0.13711 (11) 0.0429 (4)
C6 0.34366 (13) 0.8754 (3) 0.19343 (12) 0.0584 (5)
H6A 0.3790 0.8420 0.1491 0.088*
H6B 0.3559 0.7799 0.2409 0.088*
H6C 0.3774 0.9870 0.2263 0.088*
C7 0.23363 (12) 0.9170 (2) −0.01501 (11) 0.0463 (4)
C8 0.29383 (12) 1.0713 (2) −0.02269 (11) 0.0495 (4)
H8 0.2956 1.1732 0.0154 0.059*
C9 0.35159 (13) 1.0782 (2) −0.08547 (12) 0.0519 (4)
C10 0.34733 (15) 0.9243 (2) −0.14132 (12) 0.0593 (5)
H10 0.3852 0.9247 −0.1840 0.071*
C11 0.28748 (15) 0.7705 (2) −0.13432 (12) 0.0596 (5)
H11 0.2865 0.6689 −0.1723 0.072*
C12 0.22837 (14) 0.7620 (2) −0.07228 (11) 0.0519 (4)
C13 0.41634 (15) 1.2478 (3) −0.09201 (14) 0.0697 (6)
H13A 0.4961 1.2359 −0.0489 0.105*
H13B 0.3837 1.3525 −0.0733 0.105*
H13C 0.4104 1.2630 −0.1581 0.105*
C14 0.16000 (19) 0.5964 (3) −0.06737 (16) 0.0763 (6)
H14A 0.1561 0.5120 −0.1181 0.115*
H14B 0.0833 0.6330 −0.0762 0.115*
H14C 0.1969 0.5386 −0.0047 0.115*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0432 (7) 0.0719 (9) 0.0400 (7) 0.0059 (6) 0.0191 (6) 0.0070 (6)
N2 0.0423 (7) 0.0664 (9) 0.0424 (7) 0.0002 (6) 0.0202 (6) −0.0022 (6)
C1 0.0489 (9) 0.0738 (11) 0.0523 (10) 0.0075 (8) 0.0288 (8) 0.0091 (8)
C2 0.0652 (10) 0.0790 (12) 0.0473 (9) 0.0149 (9) 0.0326 (8) 0.0163 (8)
C3 0.0541 (9) 0.0734 (11) 0.0453 (9) 0.0149 (8) 0.0209 (7) 0.0138 (8)
C4 0.0438 (8) 0.0480 (8) 0.0448 (8) 0.0050 (6) 0.0201 (7) 0.0048 (6)
C5 0.0433 (8) 0.0435 (8) 0.0443 (8) 0.0028 (6) 0.0199 (7) 0.0018 (6)
C6 0.0464 (9) 0.0780 (11) 0.0532 (10) 0.0155 (8) 0.0224 (8) 0.0126 (8)
C7 0.0386 (7) 0.0633 (10) 0.0379 (8) 0.0077 (6) 0.0160 (6) 0.0014 (6)
C8 0.0434 (8) 0.0631 (10) 0.0434 (9) 0.0018 (7) 0.0186 (7) −0.0037 (7)
C9 0.0407 (8) 0.0717 (11) 0.0447 (9) 0.0111 (7) 0.0182 (7) 0.0096 (7)
C10 0.0574 (10) 0.0814 (13) 0.0470 (9) 0.0206 (9) 0.0290 (8) 0.0107 (8)
C11 0.0686 (11) 0.0677 (11) 0.0442 (9) 0.0206 (9) 0.0240 (8) −0.0019 (7)
C12 0.0515 (9) 0.0592 (10) 0.0417 (8) 0.0093 (7) 0.0146 (7) 0.0018 (7)
C13 0.0578 (10) 0.0887 (14) 0.0699 (12) −0.0006 (9) 0.0330 (9) 0.0152 (10)
C14 0.0877 (14) 0.0680 (13) 0.0735 (14) −0.0043 (10) 0.0318 (12) −0.0063 (9)

Geometric parameters (Å, º)

N1—C1 1.3536 (19) C7—C12 1.403 (2)
N1—C4 1.3742 (19) C8—C9 1.390 (2)
N1—H1 0.8600 C8—H8 0.9300
N2—C5 1.288 (2) C9—C10 1.386 (2)
N2—C7 1.4248 (18) C9—C13 1.508 (2)
C1—C2 1.346 (2) C10—C11 1.380 (2)
C1—H1A 0.9300 C10—H10 0.9300
C2—C3 1.407 (2) C11—C12 1.394 (2)
C2—H2 0.9300 C11—H11 0.9300
C3—C4 1.376 (2) C12—C14 1.504 (2)
C3—H3 0.9300 C13—H13A 0.9600
C4—C5 1.453 (2) C13—H13B 0.9600
C5—C6 1.504 (2) C13—H13C 0.9600
C6—H6A 0.9600 C14—H14A 0.9600
C6—H6B 0.9600 C14—H14B 0.9600
C6—H6C 0.9600 C14—H14C 0.9600
C7—C8 1.388 (2)
C1—N1—C4 109.68 (13) C7—C8—C9 122.06 (14)
C1—N1—H1 125.2 C7—C8—H8 119.0
C4—N1—H1 125.2 C9—C8—H8 119.0
C5—N2—C7 120.42 (13) C10—C9—C8 117.65 (15)
C2—C1—N1 108.68 (14) C10—C9—C13 121.59 (15)
C2—C1—H1A 125.7 C8—C9—C13 120.75 (15)
N1—C1—H1A 125.7 C11—C10—C9 120.68 (15)
C1—C2—C3 107.46 (15) C11—C10—H10 119.7
C1—C2—H2 126.3 C9—C10—H10 119.7
C3—C2—H2 126.3 C10—C11—C12 122.33 (15)
C4—C3—C2 107.72 (15) C10—C11—H11 118.8
C4—C3—H3 126.1 C12—C11—H11 118.8
C2—C3—H3 126.1 C11—C12—C7 117.00 (15)
N1—C4—C3 106.46 (13) C11—C12—C14 122.13 (15)
N1—C4—C5 122.47 (13) C7—C12—C14 120.86 (14)
C3—C4—C5 131.04 (14) C9—C13—H13A 109.5
N2—C5—C4 118.40 (13) C9—C13—H13B 109.5
N2—C5—C6 124.76 (13) H13A—C13—H13B 109.5
C4—C5—C6 116.83 (13) C9—C13—H13C 109.5
C5—C6—H6A 109.5 H13A—C13—H13C 109.5
C5—C6—H6B 109.5 H13B—C13—H13C 109.5
H6A—C6—H6B 109.5 C12—C14—H14A 109.5
C5—C6—H6C 109.5 C12—C14—H14B 109.5
H6A—C6—H6C 109.5 H14A—C14—H14B 109.5
H6B—C6—H6C 109.5 C12—C14—H14C 109.5
C8—C7—C12 120.27 (14) H14A—C14—H14C 109.5
C8—C7—N2 119.97 (13) H14B—C14—H14C 109.5
C12—C7—N2 119.44 (13)
C4—N1—C1—C2 −0.40 (19) C5—N2—C7—C12 105.74 (16)
N1—C1—C2—C3 0.5 (2) C12—C7—C8—C9 −0.7 (2)
C1—C2—C3—C4 −0.4 (2) N2—C7—C8—C9 −174.23 (13)
C1—N1—C4—C3 0.13 (17) C7—C8—C9—C10 0.1 (2)
C1—N1—C4—C5 178.29 (13) C7—C8—C9—C13 −179.93 (15)
C2—C3—C4—N1 0.17 (18) C8—C9—C10—C11 0.1 (2)
C2—C3—C4—C5 −177.76 (15) C13—C9—C10—C11 −179.93 (15)
C7—N2—C5—C4 −179.32 (12) C9—C10—C11—C12 0.5 (3)
C7—N2—C5—C6 0.7 (2) C10—C11—C12—C7 −1.1 (2)
N1—C4—C5—N2 −3.2 (2) C10—C11—C12—C14 177.92 (16)
C3—C4—C5—N2 174.48 (16) C8—C7—C12—C11 1.2 (2)
N1—C4—C5—C6 176.84 (14) N2—C7—C12—C11 174.73 (13)
C3—C4—C5—C6 −5.5 (2) C8—C7—C12—C14 −177.81 (15)
C5—N2—C7—C8 −80.71 (18) N2—C7—C12—C14 −4.3 (2)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C7–C12 ring.

D—H···A D—H H···A D···A D—H···A
N1—H1···N2i 0.86 2.34 3.1354 (18) 155
C1—H1A···Cg1i 0.93 2.65 3.4298 (16) 142

Symmetry code: (i) −x, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ5010).

References

  1. Britovsek, G. J. P., Gibson, V. C., Hoarau, O. D., Spitzmesser, S. K., White, A. J. P. & Williams, D. J. (2003). Inorg. Chem. 42, 3454–3465. [DOI] [PubMed]
  2. Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Dawson, D. M., Walker, D. A., Thornton-Pett, M. & Bochmann, M. (2000). J. Chem. Soc. Dalton Trans. pp. 459–466.
  4. He, L.-P., Liu, J.-Y., Pan, L., Wu, J.-Q., Xu, B.-C. & Li, Y.-S. (2009). J. Polym. Sci. Part A Polym. Chem. 47, 713–721.
  5. Matsuo, Y., Mashima, K. & Tani, K. (2001). Organometallics, 20, 3510–3518.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Su, B.-Y., Zhao, J.-S., Zhang, Q.-Z. & Qin, W.-L. (2009a). Synth. Commun. 39, 4429–4440.
  8. Su, B.-Y., Zhao, J.-S., Zhang, Q.-Z. & Qin, W.-L. (2009b). Polym. Int. 58, 1051–1057.
  9. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  10. Wu, Z.-K., Chen, Q.-Q., Xiong, S.-X., Xin, B., Zhao, Z.-W., Jiang, L.-J. & Ma, J.-S. (2003). Angew. Chem. Int. Ed. 42, 3271–3274. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812040858/rz5010sup1.cif

e-68-o3088-sup1.cif (16.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812040858/rz5010Isup2.hkl

e-68-o3088-Isup2.hkl (120KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812040858/rz5010Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES