Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Oct 10;68(Pt 11):o3100. doi: 10.1107/S1600536812041621

3,6-Dibromo­phenanthrene

Ruri Yokota a, Chitoshi Kitamura a,*, Takeshi Kawase a
PMCID: PMC3515201  PMID: 23284428

Abstract

The phenanthrene ring in the title compound, C14H8Br2, is approximately planar [maximum deviation = 0.039 (3) Å]. In contrast, the two bromo atoms are displaced slightly from the phenanthrene plane [maximum deviation = 0.1637 (3) Å]. In the crystal, the mol­ecules adopt a herringbone-like arrangement and form face-to-face slipped π–π stacking inter­actions along the b axis, with an inter­planar distance of 3.544 (3) Å and slippage of 1.81 Å. The crystal studied was a racemic twin with a minor twin fraction of 0.390 (10).

Related literature  

For the synthesis of the title compound using the improved photocyclization of 4,4′-dibromo-trans-stilbene, see: Talele et al. (2009). For the original synthesis and applications of the title compound, see: Nakamura et al. (1996).graphic file with name e-68-o3100-scheme1.jpg

Experimental  

Crystal data  

  • C14H8Br2

  • M r = 336.02

  • Monoclinic, Inline graphic

  • a = 6.8697 (5) Å

  • b = 3.9809 (2) Å

  • c = 20.5002 (11) Å

  • β = 93.813 (2)°

  • V = 559.39 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 7.21 mm−1

  • T = 223 K

  • 0.62 × 0.08 × 0.03 mm

Data collection  

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999) T min = 0.196, T max = 0.793

  • 5372 measured reflections

  • 2267 independent reflections

  • 2084 reflections with I > 2σ(I)

  • R int = 0.022

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.018

  • wR(F 2) = 0.037

  • S = 1.00

  • 2267 reflections

  • 146 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.46 e Å−3

  • Absolute structure: Flack (1983), 831 Friedel pairs

  • Flack parameter: 0.390 (10)

Data collection: RAPID-AUTO (Rigaku, 1999); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812041621/qk2043sup1.cif

e-68-o3100-sup1.cif (15.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812041621/qk2043Isup2.hkl

e-68-o3100-Isup2.hkl (111.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812041621/qk2043Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by Grants-in-Aid for Scientific Research from the JSPS and MEXT.

supplementary crystallographic information

Comment

Phenanthrene is a polycylic aromatic hydrocarbon (PAH) as well as a potential building block for higher-order π-extended PAHs. The title compound, 3,6-dibromophenanthrene, was first prepared by Nakamura et al. (1996). The bromo functional group on the aromatic ring is a suitable substrate for a variety of cross-coupling reaction. Recently, the improved synthesis was reported by Talele et al. (2009). However, the X-ray structure was not reported to date. We report herein the crystal structure of the title compound, (I).

The molecular structure of (I) is shown in Fig. 1. The crystal was a racemic twin with a minor twin fraction of 0.390 (10). The molecule is approximately planar except for Br1 and Br2 [the maximum deviation is 0.1637 (3) Å for Br2]. The bonds lengths and angles are in good agreement with the standard values. As shown in Fig. 2, the crystal structure is characterized by a combination of a columnar stacking and a herrinbone-like arrangement. Along the b axis, there are two columns per unit cell in which the molecules form face-to-face slipped π-stacks with an interplanar distance of 3.543 Å. The interplanar tilt angle between the phenanthrene rings in two adjacent columns is 54.21°.

Experimental

The title compound was prepared from 4,4'-dibromo-trans-stilbene according to the literature procedure of Talele et al. (2009). The title compound was dissolved in hot hexane. After cooling of the solution to room temperature, single crystals suitable for X-ray analysis were obtained.

Refinement

All the aromatic H atoms were positioned geometrically and refined using a riding model with C—H = 0.94 Å and Uiso(H) = 1.2Ueq(C). In final refinement cycles, racemic twinning was taken into account with a TWIN and a BASF instruction of program SHELXL97 (Sheldrick, 2008), giving a minor twin fraction of 0.390 (10).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing the atomic numbering and 40% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The packing diagram of (I). Hydrogen atoms are omitted for clarity.

Crystal data

C14H8Br2 F(000) = 324
Mr = 336.02 Dx = 1.995 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 4191 reflections
a = 6.8697 (5) Å θ = 3.1–27.5°
b = 3.9809 (2) Å µ = 7.21 mm1
c = 20.5002 (11) Å T = 223 K
β = 93.813 (2)° Needle, colorless
V = 559.39 (6) Å3 0.62 × 0.08 × 0.03 mm
Z = 2

Data collection

Rigaku R-AXIS RAPID diffractometer 2267 independent reflections
Radiation source: fine-focus sealed x-ray tube 2084 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.022
Detector resolution: 10 pixels mm-1 θmax = 27.5°, θmin = 3.1°
ω scans h = −8→8
Absorption correction: numerical (NUMABS; Higashi, 1999) k = −5→4
Tmin = 0.196, Tmax = 0.793 l = −26→26
5372 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.018 H-atom parameters constrained
wR(F2) = 0.037 w = 1/[σ2(Fo2) + (0.0175P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max = 0.002
2267 reflections Δρmax = 0.38 e Å3
146 parameters Δρmin = −0.46 e Å3
1 restraint Absolute structure: Flack (1983), 831 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.390 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 −0.1808 (4) 0.2590 (6) 0.88179 (11) 0.0315 (7)
H1 −0.2947 0.3158 0.9023 0.038*
C2 −0.0292 (4) 0.1043 (7) 0.91762 (12) 0.0313 (6)
H2 −0.0389 0.0537 0.9621 0.038*
C3 0.1384 (4) 0.0249 (7) 0.88644 (11) 0.0270 (6)
C4 0.1569 (4) 0.0897 (6) 0.82192 (11) 0.0249 (6)
H4 0.2724 0.0318 0.8025 0.03*
C5 0.0013 (4) 0.2449 (6) 0.78399 (11) 0.0243 (6)
C6 0.0120 (3) 0.3192 (8) 0.71506 (10) 0.0236 (5)
C7 0.1731 (4) 0.2289 (6) 0.67943 (11) 0.0241 (6)
H7 0.2806 0.1184 0.7005 0.029*
C8 0.1728 (4) 0.3020 (7) 0.61427 (11) 0.0259 (5)
C9 0.0176 (4) 0.4707 (7) 0.58081 (12) 0.0301 (6)
H9 0.0215 0.522 0.5362 0.036*
C10 −0.1392 (4) 0.5590 (7) 0.61443 (12) 0.0309 (6)
H10 −0.2438 0.6729 0.5924 0.037*
C11 −0.1487 (4) 0.4842 (7) 0.68117 (11) 0.0260 (5)
C12 −0.3169 (4) 0.5686 (7) 0.71513 (13) 0.0325 (7)
H12 −0.4223 0.6774 0.6925 0.039*
C13 −0.3277 (4) 0.4956 (8) 0.77907 (13) 0.0330 (6)
H13 −0.4408 0.5519 0.8001 0.04*
C14 −0.1683 (4) 0.3330 (8) 0.81549 (11) 0.0270 (5)
Br1 0.35013 (4) −0.17379 (7) 0.937295 (11) 0.03280 (8)
Br2 0.38478 (4) 0.16231 (7) 0.565973 (12) 0.03364 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0312 (15) 0.0336 (18) 0.0310 (12) 0.0016 (11) 0.0128 (11) −0.0049 (11)
C2 0.0392 (16) 0.0317 (16) 0.0237 (11) −0.0038 (12) 0.0084 (11) 0.0023 (12)
C3 0.0291 (15) 0.0259 (12) 0.0256 (12) −0.0017 (11) 0.0000 (11) −0.0018 (11)
C4 0.0248 (14) 0.0252 (15) 0.0251 (11) −0.0008 (10) 0.0054 (10) −0.0017 (10)
C5 0.0248 (13) 0.0239 (15) 0.0245 (11) −0.0031 (9) 0.0029 (10) −0.0029 (10)
C6 0.0229 (12) 0.0214 (10) 0.0262 (11) −0.0041 (13) 0.0002 (9) −0.0010 (13)
C7 0.0222 (12) 0.0258 (15) 0.0241 (11) 0.0026 (9) −0.0001 (9) 0.0001 (10)
C8 0.0265 (13) 0.0248 (12) 0.0268 (11) −0.0043 (12) 0.0047 (10) −0.0039 (12)
C9 0.0363 (16) 0.0281 (13) 0.0255 (12) −0.0004 (13) −0.0007 (11) 0.0012 (12)
C10 0.0296 (16) 0.0299 (14) 0.0324 (13) 0.0032 (11) −0.0053 (11) 0.0001 (12)
C11 0.0247 (14) 0.0228 (12) 0.0301 (12) −0.0018 (11) −0.0009 (10) −0.0032 (12)
C12 0.0223 (15) 0.0348 (16) 0.0396 (14) 0.0064 (11) −0.0028 (12) −0.0063 (13)
C13 0.0237 (15) 0.0344 (14) 0.0416 (14) 0.0030 (13) 0.0071 (11) −0.0080 (14)
C14 0.0255 (13) 0.0244 (11) 0.0315 (11) −0.0029 (14) 0.0040 (10) −0.0012 (14)
Br1 0.03496 (16) 0.03660 (14) 0.02647 (12) 0.00097 (14) −0.00083 (10) 0.00312 (13)
Br2 0.03388 (15) 0.04005 (15) 0.02791 (12) 0.00275 (14) 0.00893 (10) 0.00034 (13)

Geometric parameters (Å, º)

C1—C2 1.379 (4) C7—C8 1.367 (3)
C1—C14 1.399 (3) C7—H7 0.94
C1—H1 0.94 C8—C9 1.400 (3)
C2—C3 1.390 (4) C8—Br2 1.898 (2)
C2—H2 0.94 C9—C10 1.363 (4)
C3—C4 1.362 (3) C9—H9 0.94
C3—Br1 1.904 (2) C10—C11 1.406 (3)
C4—C5 1.420 (3) C10—H10 0.94
C4—H4 0.94 C11—C12 1.428 (4)
C5—C14 1.413 (3) C12—C13 1.350 (4)
C5—C6 1.450 (3) C12—H12 0.94
C6—C7 1.412 (3) C13—C14 1.437 (4)
C6—C11 1.426 (3) C13—H13 0.94
C2—C1—C14 121.2 (2) C7—C8—C9 122.2 (2)
C2—C1—H1 119.4 C7—C8—Br2 119.72 (19)
C14—C1—H1 119.4 C9—C8—Br2 118.07 (17)
C1—C2—C3 118.4 (2) C10—C9—C8 118.5 (2)
C1—C2—H2 120.8 C10—C9—H9 120.7
C3—C2—H2 120.8 C8—C9—H9 120.7
C4—C3—C2 122.5 (2) C9—C10—C11 121.8 (2)
C4—C3—Br1 119.6 (2) C9—C10—H10 119.1
C2—C3—Br1 117.94 (17) C11—C10—H10 119.1
C3—C4—C5 119.9 (2) C6—C11—C10 119.1 (2)
C3—C4—H4 120 C6—C11—C12 119.8 (2)
C5—C4—H4 120 C10—C11—C12 121.1 (2)
C14—C5—C4 118.1 (2) C13—C12—C11 121.4 (2)
C14—C5—C6 119.4 (2) C13—C12—H12 119.3
C4—C5—C6 122.5 (2) C11—C12—H12 119.3
C7—C6—C11 118.3 (2) C12—C13—C14 120.8 (3)
C7—C6—C5 123.0 (2) C12—C13—H13 119.6
C11—C6—C5 118.7 (2) C14—C13—H13 119.6
C8—C7—C6 120.0 (2) C5—C14—C1 119.8 (2)
C8—C7—H7 120 C5—C14—C13 119.8 (2)
C6—C7—H7 120 C1—C14—C13 120.4 (2)
C14—C1—C2—C3 0.5 (4) C7—C6—C11—C10 −1.7 (4)
C1—C2—C3—C4 −1.0 (4) C5—C6—C11—C10 179.6 (2)
C1—C2—C3—Br1 177.77 (19) C7—C6—C11—C12 177.8 (2)
C2—C3—C4—C5 0.2 (4) C5—C6—C11—C12 −0.8 (4)
Br1—C3—C4—C5 −178.56 (17) C9—C10—C11—C6 1.6 (4)
C3—C4—C5—C14 1.1 (3) C9—C10—C11—C12 −177.9 (3)
C3—C4—C5—C6 −179.8 (2) C6—C11—C12—C13 0.0 (4)
C14—C5—C6—C7 −177.7 (3) C10—C11—C12—C13 179.5 (3)
C4—C5—C6—C7 3.2 (4) C11—C12—C13—C14 0.7 (5)
C14—C5—C6—C11 0.9 (4) C4—C5—C14—C1 −1.6 (4)
C4—C5—C6—C11 −178.2 (2) C6—C5—C14—C1 179.3 (3)
C11—C6—C7—C8 0.5 (4) C4—C5—C14—C13 179.0 (2)
C5—C6—C7—C8 179.0 (2) C6—C5—C14—C13 −0.2 (4)
C6—C7—C8—C9 1.0 (4) C2—C1—C14—C5 0.8 (4)
C6—C7—C8—Br2 −177.3 (2) C2—C1—C14—C13 −179.7 (3)
C7—C8—C9—C10 −1.1 (4) C12—C13—C14—C5 −0.6 (5)
Br2—C8—C9—C10 177.1 (2) C12—C13—C14—C1 179.9 (3)
C8—C9—C10—C11 −0.2 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: QK2043).

References

  1. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Higashi, T. (1999). NUMABS Rigaku Corporation, Tokyo, Japan.
  6. Nakamura, Y., Tsuihiji, T., Mita, T., Minowa, T., Tobita, S., Shizuka, H. & Nishimura, J. (1996). J. Am. Chem. Soc. 118, 1006–1012.
  7. Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  8. Rigaku (1999). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Talele, H. R., Gohil, M. J. & Bedekar, A. V. (2009). Bull. Chem. Soc. Jpn, 82, 1182–1186.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812041621/qk2043sup1.cif

e-68-o3100-sup1.cif (15.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812041621/qk2043Isup2.hkl

e-68-o3100-Isup2.hkl (111.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812041621/qk2043Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES