Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Oct 13;68(Pt 11):o3107. doi: 10.1107/S1600536812041773

2,4,6-Trinitro­phenyl 4-methyl­benzoate

Rodolfo Moreno-Fuquen a,*, Fabricio Mosquera a, Javier Ellena b, Juan C Tenorio b, Rodrigo S Corrêa c
PMCID: PMC3515213  PMID: 23284433

Abstract

In the title compound, C14H9N3O8, the benzene rings form a dihedral angle of 69.02 (5)°. The central ester group is rotated by 25.86 (9)° relative to the p-tolyl group. In the crystal, the mol­ecules are linked by C—H⋯O inter­actions into helical chains along [010].

Related literature  

For optical, pharmacological and crystalline properties of picric acid, see: Khan et al. (2010); Zaderenko et al. (1997). For picric acid derivatives, see: Bertolasi et al. (2011). For bond-length data, see: Allen et al. (1987). For similar structures, see: Moreno-Fuquen et al. (2012); Bibi et al. (2009); Shibakami et al. (1994); Shibakami & Sekiya (1995); For hydrogen bonding, see: Nardelli (1995) and for supra­molecular aggregation behaviour of isomers, see: Glidewell et al. (2005).graphic file with name e-68-o3107-scheme1.jpg

Experimental  

Crystal data  

  • C14H9N3O8

  • M r = 347.24

  • Monoclinic, Inline graphic

  • a = 7.6126 (2) Å

  • b = 8.2124 (2) Å

  • c = 23.9893 (7) Å

  • β = 94.448 (1)°

  • V = 1495.24 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 295 K

  • 0.27 × 0.22 × 0.18 mm

Data collection  

  • Nonius KappaCCD diffractometer

  • 5494 measured reflections

  • 3044 independent reflections

  • 2296 reflections with I > 2σ(I)

  • R int = 0.017

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.123

  • S = 1.02

  • 3044 reflections

  • 227 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: COLLECT (Nonius, 2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812041773/ld2074sup1.cif

e-68-o3107-sup1.cif (18.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812041773/ld2074Isup2.hkl

e-68-o3107-Isup2.hkl (149.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812041773/ld2074Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O8i 0.93 2.50 3.4286 (19) 175

Symmetry code: (i) Inline graphic.

Acknowledgments

RMF is grateful to the Spanish Research Council (CSIC) for the use of a free-of-charge licence to the Cambridge Structural Database. RMF also thanks the Universidad del Valle, Colombia, for partial financial support.

supplementary crystallographic information

Comment

The title compound, C14H9O8N3 [2,4,6-trinitrophenyl 4-methylbenzoate] (I), belongs to a group of molecules known as nitro aryl benzoates. Recently, we have been investigating the synthesis, properties and main features of these nitroaromatic compounds, in particular - the derivatives of picric acid (trinitrophenol - TNP) (Bertolasi et al., 2011). These compounds have never been synthesized before and there is no any prior entries in CCSD related to such esters, except 2,4,6-trinitrophenyl 3-methylbenzoate (TNP3MeBA), an isomer of the title compound, that we recently published (Moreno-Fuquen et al., 2012). Our special interest in TNP is attributable to the optical, pharmacological and solid-state properties of its molecular adducts (Khan et al., 2010); Zaderenko et al., 1997) and the absence of any information of the picric acid as a part of aryl esters that probably can show similar or more interesting properties. In order to find out the molecular conformation of (I) and its supramolecular behavior, the title compound was synthesized. The molecular structure of (I) is presented on Fig. 1 with the numbering scheme similar to that for TNP-3MeBA in order to simplify structural comparisons. In the title structure, the phenolic C1—O7 bond length is significantly shortened [1.3715 (17) Å] and the benzoic C7—O7 bond length is significantly elongated [1.3898 (17) Å] as compared to other phenylbenzoates systems [1.422 (5) Å and 1.354 (5) Å respectively (Shibakami et al., 1994) and 1.415 (2) Å and 1.351 (2) Å respectively (Shibakami & Sekiya, 1995)]. However, these parameters are pretty close to the values presented in other crystal systems which contain similar substituents with respect to this structure, more specifically when there is nitro substituent in any of the benzene rings at the benzoate [for C1—O7= 1.395 (2) Å and for C7—O7= 1.376 (3) Å (Bibi et al., 2009) and 1.3676 (17) Å and 1.3820 (18) Å respectively (Moreno-Fuquen et al., 2012)]. Other bond lengths and bond angles of (I) agree with the literature values (Allen et al., 1987). The benzene rings of (I) form a dihedral angle of 69.02 (5)°, compared with values of 87.48 (5)° in TNP3MeBA. The central ester moiety forms an angle of 25.86 (9)° with the methylbenzene ring to which it is attached. This value is similar to the corresponding angle in its structural isomer TNP3MeBA - 19.42 (7)°. The nitro groups form dihedral angles with the adjacent benzene ring of 30.57 (11)°, 14.75 (16)° and 7.37 (17)° for O1—N1—O2, O3—N2—O4 and O5—N3—O6, respectively. The molecules are packed forming weak interactions C—H···O in one-dimensional helical chains which grow along [010] (see Fig. 2). The C3 atom of the phenyl ring at (x,y,z) acts as a hydrogen-bond donor to carbonyl atom O8 at (-x + 1,+y + 1/2,-z + 1/2) (see Table 1; Nardelli, 1995). We have found that (I) and its isomer TNP3MeBA show a marked similarity in terms of spatial group, unit-cell parameters and finally the intermolecular interactions given the supramolecular aggregation of these isomers. This behavior is very uncommon in compounds showing constitutional isomerism, since small changes in the molecular structures of the isomers usually lead to large changes in molecular aggregation of the structures (Glidewell et al., 2005).

Experimental

The reagents and solvents for the synthesis were obtained from the Aldrich Chemical Co., and were used without additional purification. The title molecule was obtained through a two-step reaction. First the 4-methylbenzoic acid (0.25 g, 1.836 mmol) was refluxed in an excess of thionyl chloride (10 ml) during an hour. Then thionyl chloride was distilled off under reduced pressure to purify the 4-methylbenzoyl chloride obtained as a pale yellow traslucent liquid. The same reaction flask was rearranged and a solution of picric acid (0.42 g, 1.835 mmol) in acetonitrile was added dropwise with constant stirring. The reaction mixture was let to reflux for about an hour. A pale yellow solid was obtained after leaving the solvent to evaporate. The solid was washed with distilled water and cold methanol to eliminate impurities. Crystals of good quality and suitable for single-crystal X-ray diffraction were grown from acetonitrile. IR spectra were recorded on a FT—IR SHIMADZU IR-Affinity-1 spectrophotometer. Pale Yellow crystals; yield 38%; m.p 417 (1) K. IR (KBr) 3112.86 cm-1, 3086.07 cm-1 (aromatic C—H); 2962.07 cm-1, 2915.70 cm-1 (methyl C—H); 1754.68 cm-1 (ester C=O); 1609.43 cm-1 (C=C); 1549.55 cm-1, 1341.69 cm-1 (–NO2); 1224.07 cm-1 (C(=O)—O).

Refinement

All the H-atoms attached to C atoms were positioned at geometrically idealized positions and treated as riding with C—H= 0.93 Å (aromatic) and 0.96 Å (methyl) with Uiso(H) = 1.2 Ueq (aromatic) and Uiso(H) = 1.5 Ueq (methyl). The positions of H atoms of the methyl group were rotationally optimized

Figures

Fig. 1.

Fig. 1.

Molecular conformation and atom numbering scheme of the title compound with displacement ellipsoids drawn at 50% probability level. H atoms are shown as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Part of the crystal structure of (I) showing the formation of helical chains along [010]. Symmetry code: (i) -x+1,+y+1/2,-z+1/2.

Crystal data

C14H9N3O8 F(000) = 712
Mr = 347.24 Dx = 1.543 Mg m3
Monoclinic, P21/c Melting point: 417(1) K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 7.6126 (2) Å Cell parameters from 3076 reflections
b = 8.2124 (2) Å θ = 3.0–26.4°
c = 23.9893 (7) Å µ = 0.13 mm1
β = 94.448 (1)° T = 295 K
V = 1495.24 (7) Å3 Block, pale-yellow
Z = 4 0.27 × 0.22 × 0.18 mm

Data collection

Nonius KappaCCD diffractometer 2296 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.017
Graphite monochromator θmax = 26.4°, θmin = 3.0°
CCD rotation images, thick slices scans h = −9→9
5494 measured reflections k = −9→10
3044 independent reflections l = −29→29

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0698P)2 + 0.224P] where P = (Fo2 + 2Fc2)/3
3044 reflections (Δ/σ)max < 0.001
227 parameters Δρmax = 0.18 e Å3
1 restraint Δρmin = −0.24 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.4307 (2) 0.4914 (2) 0.33344 (6) 0.0840 (5)
O2 0.56533 (16) 0.66653 (15) 0.28637 (6) 0.0633 (4)
O3 0.5292 (2) 0.5772 (3) 0.08518 (7) 0.1011 (6)
O4 0.3254 (2) 0.4222 (3) 0.04835 (7) 0.1007 (6)
O5 −0.18224 (17) 0.33867 (18) 0.14637 (6) 0.0732 (4)
O6 −0.17197 (15) 0.33696 (15) 0.23563 (5) 0.0595 (3)
O7 0.09683 (13) 0.46979 (12) 0.29293 (4) 0.0407 (3)
O8 0.16920 (15) 0.20662 (13) 0.30759 (5) 0.0525 (3)
N1 0.45379 (16) 0.56271 (17) 0.29052 (6) 0.0469 (3)
N2 0.3987 (2) 0.4953 (2) 0.08753 (7) 0.0664 (4)
N3 −0.10536 (17) 0.35918 (15) 0.19191 (6) 0.0460 (3)
C1 0.17239 (18) 0.46265 (16) 0.24291 (6) 0.0362 (3)
C2 0.34413 (18) 0.51938 (17) 0.23953 (6) 0.0386 (3)
C3 0.41940 (19) 0.53543 (18) 0.18945 (7) 0.0433 (4)
H3 0.5318 0.5787 0.1878 0.052*
C4 0.3213 (2) 0.48477 (19) 0.14189 (7) 0.0462 (4)
C5 0.1537 (2) 0.42336 (19) 0.14288 (7) 0.0457 (4)
H5 0.0918 0.3878 0.1102 0.055*
C6 0.07943 (18) 0.41560 (17) 0.19332 (6) 0.0393 (3)
C7 0.09911 (18) 0.32603 (18) 0.32354 (7) 0.0396 (4)
C8 0.00660 (19) 0.34449 (18) 0.37471 (7) 0.0420 (4)
C9 −0.1286 (2) 0.4560 (2) 0.37848 (7) 0.0516 (4)
H9 −0.1580 0.5273 0.3491 0.062*
C10 −0.2198 (2) 0.4607 (2) 0.42623 (8) 0.0618 (5)
H10 −0.3118 0.5344 0.4283 0.074*
C11 −0.1768 (2) 0.3578 (3) 0.47078 (7) 0.0595 (5)
C12 −0.0394 (2) 0.2490 (2) 0.46659 (7) 0.0617 (5)
H12 −0.0074 0.1803 0.4965 0.074*
C13 0.0511 (2) 0.2402 (2) 0.41905 (7) 0.0537 (4)
H13 0.1414 0.1648 0.4167 0.064*
C14 −0.2789 (3) 0.3625 (4) 0.52240 (9) 0.0880 (7)
H14A −0.2015 0.3370 0.5547 0.132*
H14B −0.3727 0.2841 0.5187 0.132*
H14C −0.3274 0.4693 0.5265 0.132*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0738 (9) 0.1154 (12) 0.0599 (8) −0.0385 (9) −0.0135 (7) 0.0239 (8)
O2 0.0497 (7) 0.0579 (8) 0.0813 (9) −0.0212 (6) −0.0008 (6) −0.0053 (6)
O3 0.0687 (10) 0.1650 (17) 0.0728 (10) −0.0334 (11) 0.0253 (8) 0.0139 (11)
O4 0.0954 (12) 0.1528 (17) 0.0567 (9) −0.0247 (12) 0.0243 (8) −0.0252 (10)
O5 0.0516 (7) 0.0986 (11) 0.0677 (9) −0.0220 (7) −0.0064 (6) −0.0147 (7)
O6 0.0435 (6) 0.0694 (8) 0.0667 (8) −0.0163 (6) 0.0113 (6) 0.0084 (6)
O7 0.0426 (6) 0.0342 (5) 0.0468 (6) −0.0005 (4) 0.0123 (5) 0.0012 (4)
O8 0.0546 (7) 0.0402 (6) 0.0648 (8) 0.0080 (5) 0.0179 (6) 0.0051 (5)
N1 0.0364 (7) 0.0469 (8) 0.0571 (8) −0.0044 (6) 0.0021 (5) −0.0011 (6)
N2 0.0529 (9) 0.0924 (12) 0.0560 (10) −0.0001 (9) 0.0169 (8) 0.0064 (9)
N3 0.0384 (7) 0.0389 (7) 0.0608 (9) −0.0058 (5) 0.0028 (7) −0.0017 (6)
C1 0.0359 (7) 0.0275 (7) 0.0461 (8) 0.0019 (5) 0.0083 (6) 0.0008 (6)
C2 0.0350 (7) 0.0306 (7) 0.0504 (8) 0.0001 (6) 0.0036 (6) 0.0003 (6)
C3 0.0338 (7) 0.0396 (8) 0.0576 (10) −0.0003 (6) 0.0103 (7) 0.0051 (7)
C4 0.0440 (8) 0.0482 (9) 0.0478 (9) 0.0046 (7) 0.0117 (7) 0.0044 (7)
C5 0.0443 (8) 0.0447 (8) 0.0481 (9) 0.0007 (7) 0.0036 (7) −0.0014 (7)
C6 0.0334 (7) 0.0331 (7) 0.0515 (9) −0.0006 (6) 0.0038 (6) 0.0007 (6)
C7 0.0318 (7) 0.0368 (8) 0.0503 (9) −0.0017 (6) 0.0035 (6) 0.0033 (7)
C8 0.0362 (7) 0.0431 (8) 0.0469 (9) −0.0026 (6) 0.0037 (6) 0.0027 (7)
C9 0.0464 (9) 0.0600 (10) 0.0492 (10) 0.0113 (8) 0.0083 (7) 0.0104 (8)
C10 0.0504 (10) 0.0798 (13) 0.0566 (11) 0.0186 (9) 0.0125 (8) 0.0066 (9)
C11 0.0529 (10) 0.0821 (13) 0.0440 (10) −0.0031 (9) 0.0074 (8) 0.0034 (9)
C12 0.0652 (11) 0.0722 (12) 0.0472 (10) 0.0042 (10) 0.0009 (8) 0.0161 (9)
C13 0.0493 (9) 0.0575 (10) 0.0542 (10) 0.0091 (8) 0.0031 (8) 0.0082 (8)
C14 0.0818 (15) 0.130 (2) 0.0552 (13) 0.0046 (14) 0.0247 (11) 0.0093 (13)

Geometric parameters (Å, º)

O1—N1 1.2089 (18) C5—C6 1.376 (2)
O2—N1 1.2128 (17) C5—H5 0.9300
O3—N2 1.204 (2) C7—C8 1.470 (2)
O4—N2 1.214 (2) C8—C9 1.386 (2)
O5—N3 1.2106 (18) C8—C13 1.387 (2)
O6—N3 1.2135 (17) C9—C10 1.385 (2)
O7—C1 1.3715 (17) C9—H9 0.9300
O7—C7 1.3898 (17) C10—C11 1.382 (3)
O8—C7 1.1936 (18) C10—H10 0.9300
N1—C2 1.470 (2) C11—C12 1.385 (3)
N2—C4 1.474 (2) C11—C14 1.513 (2)
N3—C6 1.4790 (19) C12—C13 1.379 (2)
C1—C6 1.391 (2) C12—H12 0.9300
C1—C2 1.396 (2) C13—H13 0.9300
C2—C3 1.377 (2) C14—H14A 0.9600
C3—C4 1.378 (2) C14—H14B 0.9600
C3—H3 0.9300 C14—H14C 0.9600
C4—C5 1.374 (2)
C1—O7—C7 115.91 (11) O8—C7—O7 121.07 (13)
O1—N1—O2 124.00 (14) O8—C7—C8 127.42 (14)
O1—N1—C2 118.73 (13) O7—C7—C8 111.50 (12)
O2—N1—C2 117.24 (13) C9—C8—C13 119.77 (15)
O3—N2—O4 124.83 (17) C9—C8—C7 121.94 (14)
O3—N2—C4 117.50 (17) C13—C8—C7 118.19 (14)
O4—N2—C4 117.66 (16) C10—C9—C8 119.65 (15)
O5—N3—O6 123.63 (13) C10—C9—H9 120.2
O5—N3—C6 117.16 (13) C8—C9—H9 120.2
O6—N3—C6 119.20 (13) C11—C10—C9 121.23 (16)
O7—C1—C6 122.69 (12) C11—C10—H10 119.4
O7—C1—C2 119.66 (13) C9—C10—H10 119.4
C6—C1—C2 117.35 (13) C10—C11—C12 118.26 (16)
C3—C2—C1 122.52 (14) C10—C11—C14 120.74 (18)
C3—C2—N1 117.06 (13) C12—C11—C14 120.99 (18)
C1—C2—N1 120.41 (13) C13—C12—C11 121.48 (16)
C2—C3—C4 117.26 (14) C13—C12—H12 119.3
C2—C3—H3 121.4 C11—C12—H12 119.3
C4—C3—H3 121.4 C12—C13—C8 119.59 (16)
C5—C4—C3 122.72 (15) C12—C13—H13 120.2
C5—C4—N2 118.18 (15) C8—C13—H13 120.2
C3—C4—N2 119.10 (15) C11—C14—H14A 109.5
C4—C5—C6 118.54 (15) C11—C14—H14B 109.5
C4—C5—H5 120.7 H14A—C14—H14B 109.5
C6—C5—H5 120.7 C11—C14—H14C 109.5
C5—C6—C1 121.51 (13) H14A—C14—H14C 109.5
C5—C6—N3 116.71 (13) H14B—C14—H14C 109.5
C1—C6—N3 121.76 (13)
C7—O7—C1—C6 87.32 (16) C2—C1—C6—C5 0.5 (2)
C7—O7—C1—C2 −99.17 (15) O7—C1—C6—N3 −4.2 (2)
O7—C1—C2—C3 −171.34 (12) C2—C1—C6—N3 −177.83 (12)
C6—C1—C2—C3 2.5 (2) O5—N3—C6—C5 −6.7 (2)
O7—C1—C2—N1 9.53 (19) O6—N3—C6—C5 173.77 (13)
C6—C1—C2—N1 −176.61 (12) O5—N3—C6—C1 171.70 (14)
O1—N1—C2—C3 −148.89 (16) O6—N3—C6—C1 −7.9 (2)
O2—N1—C2—C3 29.57 (19) C1—O7—C7—O8 2.8 (2)
O1—N1—C2—C1 30.3 (2) C1—O7—C7—C8 −176.87 (12)
O2—N1—C2—C1 −151.26 (14) O8—C7—C8—C9 −151.99 (17)
C1—C2—C3—C4 −3.3 (2) O7—C7—C8—C9 27.6 (2)
N1—C2—C3—C4 175.80 (13) O8—C7—C8—C13 24.5 (2)
C2—C3—C4—C5 1.3 (2) O7—C7—C8—C13 −155.96 (14)
C2—C3—C4—N2 −178.25 (13) C13—C8—C9—C10 −0.9 (3)
O3—N2—C4—C5 165.82 (18) C7—C8—C9—C10 175.47 (16)
O4—N2—C4—C5 −13.5 (3) C8—C9—C10—C11 1.1 (3)
O3—N2—C4—C3 −14.6 (3) C9—C10—C11—C12 0.0 (3)
O4—N2—C4—C3 166.10 (18) C9—C10—C11—C14 −179.2 (2)
C3—C4—C5—C6 1.5 (2) C10—C11—C12—C13 −1.2 (3)
N2—C4—C5—C6 −178.95 (14) C14—C11—C12—C13 178.0 (2)
C4—C5—C6—C1 −2.4 (2) C11—C12—C13—C8 1.3 (3)
C4—C5—C6—N3 175.99 (13) C9—C8—C13—C12 −0.2 (3)
O7—C1—C6—C5 174.10 (13) C7—C8—C13—C12 −176.76 (16)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C3—H3···O8i 0.93 2.50 3.4286 (19) 175

Symmetry code: (i) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LD2074).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bertolasi, V., Gilli, P. & Gilli, G. (2011). Cryst. Growth Des. 11, 2724–2735.
  3. Bibi, U., Siddiqi, H. M., Bolte, M. & Akhter, Z. (2009). Acta Cryst. E65, o3038. [DOI] [PMC free article] [PubMed]
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  6. Glidewell, C., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2005). Acta Cryst. B61, 227–237. [DOI] [PubMed]
  7. Khan, I. M., Ahmad, A. & Oves, M. (2010). Spectrochim. Acta Part A, 77, 1059–1064. [DOI] [PubMed]
  8. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  9. Moreno-Fuquen, R., Mosquera, F., Ellena, J. & Tenorio, J. C. (2012). Acta Cryst. E68, o2187. [DOI] [PMC free article] [PubMed]
  10. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
  11. Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.
  12. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Shibakami, M. & Sekiya, A. (1995). Acta Cryst. C51, 326–330.
  15. Shibakami, M., Tamura, M., Arimura, T., Kurosawa, S. & Sekiya, A. (1994). Acta Cryst. C50, 592–594.
  16. Zaderenko, P., Gil, M. S., López, P., Ballesteros, P., Fonseca, I. & Albert, A. (1997). Acta Cryst. B53, 961–967.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812041773/ld2074sup1.cif

e-68-o3107-sup1.cif (18.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812041773/ld2074Isup2.hkl

e-68-o3107-Isup2.hkl (149.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812041773/ld2074Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES