Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Oct 13;68(Pt 11):o3108. doi: 10.1107/S1600536812041864

A co-crystal of 3-(3,5-dinitro­benzo­yl)-1,1-dimethyl­thio­urea and N,N-dimethyl-3,5-dinitro­benzamide

Sohail Saeed a,*, Naghmana Rashid a, Ray J Butcher b, Sema Öztürk Yildirim c, Rizwan Hussain d
PMCID: PMC3515214  PMID: 23284434

Abstract

In the title compound, C10H10N4O5S·C9H9N3O5, the amide groups of 3-(3,5-dinitro-benzo­yl)-1,1-dimethyl-thio­urea and N,N-dimethyl-3,5-dinitro-benzamide mol­ecules are oriented at dihedral angles of 39.13 (8) and 55.97 (11)°, respectively, to the attached benzene rings. In the crystal, the two mol­ecules are linked by an N—H⋯O hydrogen bond. Weak C—H⋯O link the mol­ecules into a sheet parallel to the bc plane. C—H⋯S inter­actions also occur.

Related literature  

For related structures, see: Saeed et al. (2010a ,b , 2011, 2012).graphic file with name e-68-o3108-scheme1.jpg

Experimental  

Crystal data  

  • C10H10N4O5S·C9H9N3O5

  • M r = 537.47

  • Triclinic, Inline graphic

  • a = 9.8457 (5) Å

  • b = 10.0057 (5) Å

  • c = 12.5185 (6) Å

  • α = 72.413 (5)°

  • β = 78.428 (4)°

  • γ = 89.129 (4)°

  • V = 1150.35 (10) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 1.90 mm−1

  • T = 123 K

  • 0.44 × 0.38 × 0.27 mm

Data collection  

  • Agilent Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Agilent, 2011) T min = 0.488, T max = 0.628

  • 7591 measured reflections

  • 4597 independent reflections

  • 4099 reflections with I > 2σ(I)

  • R int = 0.025

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.113

  • S = 1.07

  • 4597 reflections

  • 342 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812041864/xu5627sup1.cif

e-68-o3108-sup1.cif (32.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812041864/xu5627Isup2.hkl

e-68-o3108-Isup2.hkl (225.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812041864/xu5627Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3A—H1NA⋯O5B 0.84 (2) 2.07 (2) 2.888 (2) 163 (2)
C2B—H2BA⋯O1A i 0.95 2.51 3.390 (2) 155
C4B—H4BA⋯O3A ii 0.95 2.35 3.163 (2) 143
C6B—H6BA⋯S1A 0.95 2.76 3.6856 (16) 166
C9A—H9AB⋯O5B iii 0.98 2.48 3.368 (2) 150
C9B—H9BB⋯O4B iv 0.98 2.46 3.439 (2) 175
C10A—H10B⋯O2A v 0.98 2.51 3.334 (2) 142

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

RJB acknowledges the NSF–MRI program (grant No. CHE-0619278) for funds to purchase the diffractometer.

supplementary crystallographic information

Comment

The crystal structure of the 1:1 adduct of 3-(3,5-dinitro-benzoyl)-1,1-dimethyl-thiourea and N,N-dimethyl-3,5-dinitro-benzamide is reported. It is related to our previous studies on the structural chemistry of heterocyclic compounds containing an N-substituted thiourea (Saeed et al., 2010a, 2010b, 2011) and amide (Saeed et al., 2012). Herein, as a continuation of these studies, the structure of the title compound, (I), is described.

In the crystal structure of the title compound (Fig. 1), C10H10N4O5S, C9H9N3O5, there are independent different molecules 3-(3,5-dinitro-benzoyl)-1,1-dimethyl-thiourea(A) and N, N-dimethyl-3,5-dinitro-benzamide(B) in the asymmetric unit. Both of the molecule the dinitro-benzene ring systems are planar, with a maximum deviation of 0.295 (1) Å for the O1A atom and 0.286 (2) Å for the O4B atom. In the molecular conformation of 3-(3,5-dinitro-benzoyl)-1,1-dimethyl-thiourea's the C7A=O5A and C8A=S1A bonds are anti to each other. The dihedral angle between the dinitro-benzene unit (C1A—C6A/N1A/N2A/O1A—O4A atoms) and thiourea group (N3A/C8A/N4A/S1A atoms) is 88.2 (1)°. In N-dimethyl-3,5-dinitro-benzamide, the dimethyl amide group is rotated by 59.8 (0.1)° out of the plane of the benzene ring.

The 3-(3,5-dinitro-benzoyl)-1,1-dimethyl-thiourea and N,N-dimethyl-3,5-dinitro-benzamide molecular structure is stabilized by intra- and inter molecular N—H···O and C—H···O hydrogen bonds (Fig. 1 and Table 1). The intermolecular C—H···O hydrogen bonds link the molecules into a sheet parallel to the bc plane (Fig. 2).

Experimental

To a 250 ml round flask fitted with a condenser was added dimethyl amine (0.01 mol), dichloromethane (15 ml) and triethylamine(0.5 ml) with magnetic stirring. 3,5-Dinitrobenzoyl chloride (0.01 mol) was added gradually. The reaction mixture was stirred at room temperature for 1 h and then refluxed for 1.5 h. The product precipitated as a colorless powder, which was washed three times with water and dichloromethane. Recrystallization from ethanol produced the crystals of the title compound.

Refinement

The H atoms were placed at calculated positions and allowed to ride on their carrier atoms with C—H = 0.95–0.98 Å, and with Uiso = 1.2–1.5Ueq(C). The N-bound H atom was located in a difference Fourier map and refined freely [refined distances = 0.84 (2) Å].

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom-numbering scheme and 30% probability ellipsoids. Intramolecular N—H···O hydrogen bond is indicated by a dashed line.

Fig. 2.

Fig. 2.

Part of the packing diagram of the title compound, showing a molecular sheet formed by intermolecular N—H···O and C—H···O hydrogen bonds (dashed lines).

Crystal data

C10H10N4O5S·C9H9N3O5 Z = 2
Mr = 537.47 F(000) = 556
Triclinic, P1 Dx = 1.552 Mg m3
Hall symbol: -P 1 Cu Kα radiation, λ = 1.54184 Å
a = 9.8457 (5) Å Cell parameters from 4858 reflections
b = 10.0057 (5) Å θ = 3.7–75.6°
c = 12.5185 (6) Å µ = 1.90 mm1
α = 72.413 (5)° T = 123 K
β = 78.428 (4)° Prism, colorless
γ = 89.129 (4)° 0.44 × 0.38 × 0.27 mm
V = 1150.35 (10) Å3

Data collection

Agilent Xcalibur Ruby Gemini diffractometer 4597 independent reflections
Radiation source: Enhance (Cu) X-ray Source 4099 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.025
Detector resolution: 10.5081 pixels mm-1 θmax = 75.7°, θmin = 3.8°
ω scans h = −8→12
Absorption correction: multi-scan (CrysAlis RED; Agilent, 2011) k = −11→12
Tmin = 0.488, Tmax = 0.628 l = −15→15
7591 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113 H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0651P)2 + 0.2475P] where P = (Fo2 + 2Fc2)/3
4597 reflections (Δ/σ)max = 0.001
342 parameters Δρmax = 0.44 e Å3
0 restraints Δρmin = −0.33 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1A 0.76619 (4) 0.42766 (5) 0.57712 (3) 0.02502 (12)
O1A 0.78961 (16) 0.65356 (16) −0.12724 (12) 0.0403 (4)
O2A 0.86851 (15) 0.87002 (14) −0.18650 (11) 0.0335 (3)
O3A 1.22867 (15) 0.99829 (15) −0.02521 (12) 0.0390 (3)
O4A 1.27475 (14) 0.85999 (14) 0.13226 (11) 0.0310 (3)
O5A 0.88749 (13) 0.33920 (12) 0.25463 (10) 0.0266 (3)
O1B 0.53210 (19) 0.27963 (15) 0.46302 (12) 0.0459 (4)
O2B 0.40878 (15) 0.24042 (13) 0.35063 (12) 0.0352 (3)
O3B 0.37221 (15) 0.60717 (15) 0.00223 (11) 0.0357 (3)
O4B 0.5129 (2) 0.78858 (17) −0.05161 (12) 0.0497 (4)
O5B 0.81001 (13) 0.76125 (13) 0.32225 (12) 0.0290 (3)
N1A 0.85641 (16) 0.75121 (16) −0.12002 (12) 0.0260 (3)
N2A 1.20846 (15) 0.89025 (15) 0.05610 (12) 0.0253 (3)
N3A 0.91130 (14) 0.48145 (14) 0.36539 (11) 0.0199 (3)
N4A 0.94610 (15) 0.26566 (14) 0.49228 (12) 0.0234 (3)
N1B 0.48356 (16) 0.31620 (15) 0.37681 (12) 0.0254 (3)
N2B 0.45895 (16) 0.68028 (16) 0.01822 (12) 0.0260 (3)
N3B 0.63630 (15) 0.91321 (14) 0.30300 (12) 0.0228 (3)
C1A 0.92940 (17) 0.72182 (17) −0.02373 (13) 0.0212 (3)
C2A 1.03083 (17) 0.81896 (17) −0.02984 (13) 0.0217 (3)
H2AA 1.0543 0.9010 −0.0937 0.026*
C3A 1.09632 (16) 0.79080 (17) 0.06156 (14) 0.0205 (3)
C4A 1.06124 (16) 0.67505 (16) 0.15829 (13) 0.0195 (3)
H4AA 1.1067 0.6607 0.2207 0.023*
C5A 0.95709 (16) 0.58035 (16) 0.16093 (13) 0.0189 (3)
C6A 0.89257 (16) 0.60135 (17) 0.06793 (13) 0.0204 (3)
H6AA 0.8251 0.5346 0.0676 0.024*
C7A 0.91461 (16) 0.45272 (16) 0.26354 (13) 0.0198 (3)
C8A 0.87935 (17) 0.38376 (17) 0.47537 (13) 0.0202 (3)
C9A 0.9057 (2) 0.14979 (18) 0.59838 (15) 0.0289 (4)
H9AA 0.8141 0.1653 0.6395 0.043*
H9AB 0.9740 0.1450 0.6465 0.043*
H9AC 0.9020 0.0614 0.5803 0.043*
C10A 1.0716 (2) 0.24386 (19) 0.41521 (15) 0.0301 (4)
H10A 1.1132 0.3349 0.3641 0.045*
H10B 1.0474 0.1871 0.3696 0.045*
H10C 1.1382 0.1950 0.4604 0.045*
C1B 0.51644 (17) 0.46087 (16) 0.29998 (13) 0.0197 (3)
C2B 0.47036 (16) 0.49825 (17) 0.19815 (13) 0.0196 (3)
H2BA 0.4193 0.4340 0.1770 0.024*
C3B 0.50307 (17) 0.63468 (17) 0.12917 (13) 0.0206 (3)
C4B 0.57312 (17) 0.73238 (17) 0.15966 (14) 0.0210 (3)
H4BA 0.5926 0.8257 0.1100 0.025*
C5B 0.61429 (16) 0.69075 (17) 0.26466 (14) 0.0196 (3)
C6B 0.58805 (16) 0.55288 (17) 0.33527 (13) 0.0193 (3)
H6BA 0.6183 0.5224 0.4058 0.023*
C7B 0.69378 (17) 0.79193 (17) 0.30051 (13) 0.0209 (3)
C8B 0.7131 (2) 1.01915 (19) 0.32817 (18) 0.0333 (4)
H8BA 0.8121 1.0004 0.3159 0.050*
H8BB 0.6795 1.0162 0.4081 0.050*
H8BC 0.6996 1.1122 0.2775 0.050*
C9B 0.49061 (19) 0.94183 (18) 0.29843 (15) 0.0278 (4)
H9BA 0.4410 0.8558 0.3022 0.042*
H9BB 0.4859 1.0147 0.2267 0.042*
H9BC 0.4476 0.9741 0.3634 0.042*
H1NA 0.889 (2) 0.563 (2) 0.3648 (17) 0.021 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1A 0.0265 (2) 0.0292 (2) 0.0174 (2) 0.00437 (16) −0.00275 (15) −0.00549 (16)
O1A 0.0447 (8) 0.0425 (8) 0.0328 (7) −0.0136 (6) −0.0189 (6) −0.0022 (6)
O2A 0.0478 (8) 0.0284 (7) 0.0226 (6) 0.0057 (6) −0.0134 (6) −0.0014 (5)
O3A 0.0428 (8) 0.0286 (7) 0.0343 (7) −0.0168 (6) −0.0083 (6) 0.0080 (6)
O4A 0.0298 (7) 0.0310 (7) 0.0315 (7) −0.0068 (5) −0.0105 (5) −0.0053 (5)
O5A 0.0364 (7) 0.0172 (6) 0.0253 (6) −0.0046 (5) −0.0065 (5) −0.0044 (5)
O1B 0.0758 (11) 0.0262 (7) 0.0330 (8) −0.0100 (7) −0.0259 (7) 0.0051 (6)
O2B 0.0455 (8) 0.0176 (6) 0.0421 (8) −0.0077 (5) −0.0112 (6) −0.0067 (6)
O3B 0.0376 (8) 0.0423 (8) 0.0311 (7) −0.0024 (6) −0.0168 (6) −0.0105 (6)
O4B 0.0754 (12) 0.0413 (9) 0.0241 (7) −0.0166 (8) −0.0160 (7) 0.0066 (6)
O5B 0.0251 (6) 0.0239 (6) 0.0426 (7) 0.0021 (5) −0.0121 (5) −0.0138 (5)
N1A 0.0293 (8) 0.0276 (8) 0.0197 (7) 0.0010 (6) −0.0062 (6) −0.0043 (6)
N2A 0.0241 (7) 0.0215 (7) 0.0262 (7) −0.0050 (6) −0.0010 (6) −0.0037 (6)
N3A 0.0250 (7) 0.0141 (6) 0.0175 (6) 0.0002 (5) −0.0013 (5) −0.0023 (5)
N4A 0.0270 (7) 0.0185 (7) 0.0213 (7) 0.0010 (5) −0.0025 (5) −0.0028 (6)
N1B 0.0330 (8) 0.0166 (7) 0.0243 (7) 0.0006 (6) −0.0030 (6) −0.0049 (6)
N2B 0.0307 (8) 0.0267 (8) 0.0196 (7) 0.0030 (6) −0.0050 (6) −0.0061 (6)
N3B 0.0260 (7) 0.0169 (6) 0.0249 (7) −0.0019 (5) −0.0044 (5) −0.0059 (5)
C1A 0.0234 (8) 0.0225 (8) 0.0173 (7) 0.0031 (6) −0.0045 (6) −0.0054 (6)
C2A 0.0242 (8) 0.0180 (8) 0.0178 (7) 0.0015 (6) 0.0002 (6) −0.0009 (6)
C3A 0.0195 (8) 0.0177 (7) 0.0220 (8) −0.0024 (6) −0.0008 (6) −0.0049 (6)
C4A 0.0212 (8) 0.0181 (7) 0.0177 (7) 0.0013 (6) −0.0031 (6) −0.0036 (6)
C5A 0.0214 (8) 0.0156 (7) 0.0172 (7) 0.0015 (6) −0.0006 (6) −0.0037 (6)
C6A 0.0201 (8) 0.0196 (8) 0.0208 (8) −0.0004 (6) −0.0025 (6) −0.0064 (6)
C7A 0.0202 (8) 0.0162 (7) 0.0201 (8) −0.0005 (6) −0.0023 (6) −0.0025 (6)
C8A 0.0217 (8) 0.0191 (8) 0.0184 (7) −0.0021 (6) −0.0043 (6) −0.0034 (6)
C9A 0.0355 (10) 0.0188 (8) 0.0264 (9) −0.0012 (7) −0.0054 (7) 0.0012 (7)
C10A 0.0352 (10) 0.0261 (9) 0.0259 (9) 0.0083 (7) −0.0038 (7) −0.0054 (7)
C1B 0.0214 (8) 0.0151 (7) 0.0209 (8) 0.0005 (6) −0.0012 (6) −0.0052 (6)
C2B 0.0199 (7) 0.0184 (7) 0.0213 (8) −0.0014 (6) −0.0017 (6) −0.0086 (6)
C3B 0.0215 (8) 0.0224 (8) 0.0174 (7) 0.0004 (6) −0.0027 (6) −0.0061 (6)
C4B 0.0217 (8) 0.0166 (7) 0.0212 (8) −0.0015 (6) −0.0009 (6) −0.0027 (6)
C5B 0.0170 (7) 0.0191 (8) 0.0224 (8) 0.0004 (6) −0.0010 (6) −0.0080 (6)
C6B 0.0195 (7) 0.0192 (8) 0.0195 (7) 0.0017 (6) −0.0032 (6) −0.0067 (6)
C7B 0.0232 (8) 0.0179 (7) 0.0205 (7) −0.0030 (6) −0.0027 (6) −0.0052 (6)
C8B 0.0383 (10) 0.0214 (9) 0.0427 (11) −0.0042 (7) −0.0063 (8) −0.0144 (8)
C9B 0.0321 (9) 0.0213 (8) 0.0295 (9) 0.0072 (7) −0.0088 (7) −0.0058 (7)

Geometric parameters (Å, º)

S1A—C8A 1.6764 (16) C3A—C4A 1.387 (2)
O1A—N1A 1.221 (2) C4A—C5A 1.396 (2)
O2A—N1A 1.219 (2) C4A—H4AA 0.9500
O3A—N2A 1.227 (2) C5A—C6A 1.396 (2)
O4A—N2A 1.2230 (19) C5A—C7A 1.505 (2)
O5A—C7A 1.213 (2) C6A—H6AA 0.9500
O1B—N1B 1.221 (2) C9A—H9AA 0.9800
O2B—N1B 1.220 (2) C9A—H9AB 0.9800
O3B—N2B 1.217 (2) C9A—H9AC 0.9800
O4B—N2B 1.216 (2) C10A—H10A 0.9800
O5B—C7B 1.242 (2) C10A—H10B 0.9800
N1A—C1A 1.477 (2) C10A—H10C 0.9800
N2A—C3A 1.475 (2) C1B—C2B 1.382 (2)
N3A—C7A 1.383 (2) C1B—C6B 1.389 (2)
N3A—C8A 1.404 (2) C2B—C3B 1.379 (2)
N3A—H1NA 0.84 (2) C2B—H2BA 0.9500
N4A—C8A 1.324 (2) C3B—C4B 1.389 (2)
N4A—C9A 1.462 (2) C4B—C5B 1.394 (2)
N4A—C10A 1.465 (2) C4B—H4BA 0.9500
N1B—C1B 1.474 (2) C5B—C6B 1.391 (2)
N2B—C3B 1.476 (2) C5B—C7B 1.509 (2)
N3B—C7B 1.337 (2) C6B—H6BA 0.9500
N3B—C8B 1.455 (2) C8B—H8BA 0.9800
N3B—C9B 1.468 (2) C8B—H8BB 0.9800
C1A—C2A 1.379 (2) C8B—H8BC 0.9800
C1A—C6A 1.383 (2) C9B—H9BA 0.9800
C2A—C3A 1.378 (2) C9B—H9BB 0.9800
C2A—H2AA 0.9500 C9B—H9BC 0.9800
O2A—N1A—O1A 125.14 (15) N4A—C9A—H9AA 109.5
O2A—N1A—C1A 117.76 (14) N4A—C9A—H9AB 109.5
O1A—N1A—C1A 117.09 (14) H9AA—C9A—H9AB 109.5
O4A—N2A—O3A 124.45 (15) N4A—C9A—H9AC 109.5
O4A—N2A—C3A 118.26 (14) H9AA—C9A—H9AC 109.5
O3A—N2A—C3A 117.29 (14) H9AB—C9A—H9AC 109.5
C7A—N3A—C8A 125.83 (14) N4A—C10A—H10A 109.5
C7A—N3A—H1NA 114.8 (13) N4A—C10A—H10B 109.5
C8A—N3A—H1NA 112.8 (13) H10A—C10A—H10B 109.5
C8A—N4A—C9A 120.93 (14) N4A—C10A—H10C 109.5
C8A—N4A—C10A 124.44 (14) H10A—C10A—H10C 109.5
C9A—N4A—C10A 114.36 (14) H10B—C10A—H10C 109.5
O2B—N1B—O1B 123.94 (15) C2B—C1B—C6B 123.74 (15)
O2B—N1B—C1B 117.94 (14) C2B—C1B—N1B 117.83 (14)
O1B—N1B—C1B 118.12 (15) C6B—C1B—N1B 118.40 (14)
O4B—N2B—O3B 124.34 (15) C3B—C2B—C1B 115.83 (15)
O4B—N2B—C3B 117.45 (15) C3B—C2B—H2BA 122.1
O3B—N2B—C3B 118.21 (14) C1B—C2B—H2BA 122.1
C7B—N3B—C8B 119.81 (15) C2B—C3B—C4B 123.37 (15)
C7B—N3B—C9B 124.36 (14) C2B—C3B—N2B 118.42 (14)
C8B—N3B—C9B 115.22 (14) C4B—C3B—N2B 118.19 (14)
C2A—C1A—C6A 123.23 (15) C3B—C4B—C5B 118.68 (15)
C2A—C1A—N1A 117.38 (14) C3B—C4B—H4BA 120.7
C6A—C1A—N1A 119.38 (15) C5B—C4B—H4BA 120.7
C3A—C2A—C1A 116.55 (15) C6B—C5B—C4B 120.01 (15)
C3A—C2A—H2AA 121.7 C6B—C5B—C7B 119.19 (14)
C1A—C2A—H2AA 121.7 C4B—C5B—C7B 120.73 (14)
C2A—C3A—C4A 123.43 (15) C1B—C6B—C5B 118.31 (15)
C2A—C3A—N2A 117.94 (14) C1B—C6B—H6BA 120.8
C4A—C3A—N2A 118.63 (14) C5B—C6B—H6BA 120.8
C3A—C4A—C5A 117.88 (15) O5B—C7B—N3B 123.42 (15)
C3A—C4A—H4AA 121.1 O5B—C7B—C5B 118.99 (14)
C5A—C4A—H4AA 121.1 N3B—C7B—C5B 117.54 (14)
C4A—C5A—C6A 120.56 (14) N3B—C8B—H8BA 109.5
C4A—C5A—C7A 120.30 (14) N3B—C8B—H8BB 109.5
C6A—C5A—C7A 119.12 (14) H8BA—C8B—H8BB 109.5
C1A—C6A—C5A 118.24 (15) N3B—C8B—H8BC 109.5
C1A—C6A—H6AA 120.9 H8BA—C8B—H8BC 109.5
C5A—C6A—H6AA 120.9 H8BB—C8B—H8BC 109.5
O5A—C7A—N3A 125.54 (15) N3B—C9B—H9BA 109.5
O5A—C7A—C5A 122.24 (14) N3B—C9B—H9BB 109.5
N3A—C7A—C5A 112.22 (13) H9BA—C9B—H9BB 109.5
N4A—C8A—N3A 117.18 (14) N3B—C9B—H9BC 109.5
N4A—C8A—S1A 124.68 (12) H9BA—C9B—H9BC 109.5
N3A—C8A—S1A 118.07 (12) H9BB—C9B—H9BC 109.5
O2A—N1A—C1A—C2A −14.8 (2) C7A—N3A—C8A—N4A 50.1 (2)
O1A—N1A—C1A—C2A 164.50 (16) C7A—N3A—C8A—S1A −132.89 (15)
O2A—N1A—C1A—C6A 164.30 (15) O2B—N1B—C1B—C2B −5.4 (2)
O1A—N1A—C1A—C6A −16.4 (2) O1B—N1B—C1B—C2B 175.00 (16)
C6A—C1A—C2A—C3A 0.0 (2) O2B—N1B—C1B—C6B 172.73 (15)
N1A—C1A—C2A—C3A 179.05 (14) O1B—N1B—C1B—C6B −6.9 (2)
C1A—C2A—C3A—C4A −2.6 (2) C6B—C1B—C2B—C3B 1.8 (2)
C1A—C2A—C3A—N2A 178.07 (14) N1B—C1B—C2B—C3B 179.79 (13)
O4A—N2A—C3A—C2A −173.97 (15) C1B—C2B—C3B—C4B −2.4 (2)
O3A—N2A—C3A—C2A 6.0 (2) C1B—C2B—C3B—N2B 178.90 (14)
O4A—N2A—C3A—C4A 6.7 (2) O4B—N2B—C3B—C2B −164.52 (17)
O3A—N2A—C3A—C4A −173.32 (16) O3B—N2B—C3B—C2B 15.0 (2)
C2A—C3A—C4A—C5A 2.1 (2) O4B—N2B—C3B—C4B 16.7 (2)
N2A—C3A—C4A—C5A −178.57 (13) O3B—N2B—C3B—C4B −163.76 (16)
C3A—C4A—C5A—C6A 1.0 (2) C2B—C3B—C4B—C5B 0.8 (2)
C3A—C4A—C5A—C7A 179.95 (14) N2B—C3B—C4B—C5B 179.49 (14)
C2A—C1A—C6A—C5A 2.9 (2) C3B—C4B—C5B—C6B 1.6 (2)
N1A—C1A—C6A—C5A −176.12 (14) C3B—C4B—C5B—C7B 178.49 (14)
C4A—C5A—C6A—C1A −3.4 (2) C2B—C1B—C6B—C5B 0.4 (2)
C7A—C5A—C6A—C1A 177.66 (14) N1B—C1B—C6B—C5B −177.57 (14)
C8A—N3A—C7A—O5A 1.6 (3) C4B—C5B—C6B—C1B −2.1 (2)
C8A—N3A—C7A—C5A −178.18 (14) C7B—C5B—C6B—C1B −179.10 (14)
C4A—C5A—C7A—O5A −140.51 (17) C8B—N3B—C7B—O5B 2.3 (3)
C6A—C5A—C7A—O5A 38.5 (2) C9B—N3B—C7B—O5B −168.35 (16)
C4A—C5A—C7A—N3A 39.3 (2) C8B—N3B—C7B—C5B −175.18 (15)
C6A—C5A—C7A—N3A −141.73 (15) C9B—N3B—C7B—C5B 14.2 (2)
C9A—N4A—C8A—N3A −171.11 (15) C6B—C5B—C7B—O5B 55.5 (2)
C10A—N4A—C8A—N3A 15.3 (2) C4B—C5B—C7B—O5B −121.47 (17)
C9A—N4A—C8A—S1A 12.1 (2) C6B—C5B—C7B—N3B −126.92 (16)
C10A—N4A—C8A—S1A −161.53 (14) C4B—C5B—C7B—N3B 56.1 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3A—H1NA···O5B 0.84 (2) 2.07 (2) 2.888 (2) 163 (2)
C2B—H2BA···O1Ai 0.95 2.51 3.390 (2) 155
C4B—H4BA···O3Aii 0.95 2.35 3.163 (2) 143
C6B—H6BA···S1A 0.95 2.76 3.6856 (16) 166
C9A—H9AB···O5Biii 0.98 2.48 3.368 (2) 150
C9B—H9BB···O4Biv 0.98 2.46 3.439 (2) 175
C10A—H10B···O2Av 0.98 2.51 3.334 (2) 142

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+2, −y+2, −z; (iii) −x+2, −y+1, −z+1; (iv) −x+1, −y+2, −z; (v) −x+2, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5627).

References

  1. Agilent (2011). CrysAlis PRO and CrysAlis RED Agilent Technologies, Yarnton, England.
  2. Saeed, S., Rashid, N., Butcher, R. J., Öztürk Yildirim, S. & Hussain, R. (2012). Acta Cryst. E68, o2762. [DOI] [PMC free article] [PubMed]
  3. Saeed, S., Rashid, N., Hussain, R., Jones, P. G. & Bhatti, M. H. (2010a). Cent. Eur. J. Chem. 8, 550–558.
  4. Saeed, S., Rashid, N., Jones, P. G., Ali, M. & Hussain, R. (2010b). Eur. J. Med. Chem. 45, 1323–1331. [DOI] [PubMed]
  5. Saeed, S., Rashid, N., Jones, P. G. & Tahir, A. (2011). J. Heterocycl. Chem. 48, 74–84.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812041864/xu5627sup1.cif

e-68-o3108-sup1.cif (32.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812041864/xu5627Isup2.hkl

e-68-o3108-Isup2.hkl (225.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812041864/xu5627Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES