Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Oct 13;68(Pt 11):o3109. doi: 10.1107/S1600536812042031

3-[(2-Chloro-1,3-thia­zol-5-yl)meth­yl]-5-methyl-1,3,5-oxadiazinan-4-one

Rajni Kant a,*, Vivek K Gupta a, Kamini Kapoor a, Chetan S Shripanavar b, Kaushik Banerjee b
PMCID: PMC3515215  PMID: 23284435

Abstract

In the title compound, C8H10ClN3O2S, the oxadiazinane ring is in a sofa conformation with the ring O atom deviating from the best plane of the remaining five atoms by 0.636 (2) Å. A short intra­molecular C-S⋯O=C contact [S⋯O 3.122 (2) Å, C—S⋯O 80.0 (2)°] is observed between the two mol­ecular fragments bridged by the methyl­ene group. In the crystal, C—H⋯O hydrogen bonds link mol­ecules, forming chains along the b axis.

Related literature  

For the biological activity of thia­methoxam, see: Maienfisch et al. (2001, 2006); Suchail et al. (2001); Ford & Casida (2006). For the structure of thia­methoxam, see: Chopra et al. (2004). For ring conformations, see: Duax & Norton (1975).graphic file with name e-68-o3109-scheme1.jpg

Experimental  

Crystal data  

  • C8H10ClN3O2S

  • M r = 247.70

  • Orthorhombic, Inline graphic

  • a = 4.6141 (2) Å

  • b = 11.7335 (4) Å

  • c = 20.1460 (8) Å

  • V = 1090.70 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.53 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.2 mm

Data collection  

  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) T min = 0.925, T max = 1.000

  • 22323 measured reflections

  • 2147 independent reflections

  • 1974 reflections with I > 2σ(I)

  • R int = 0.034

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.081

  • S = 1.07

  • 2147 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983), 856 Friedel pairs

  • Flack parameter: 0.04 (9)

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536812042031/gk2519sup1.cif

e-68-o3109-sup1.cif (19.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812042031/gk2519Isup2.hkl

e-68-o3109-Isup2.hkl (103.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812042031/gk2519Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O7i 0.93 2.60 3.443 (3) 151

Symmetry code: (i) Inline graphic.

Acknowledgments

RK acknowledges the Department of Science & Technology for access to the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003.

supplementary crystallographic information

Comment

An important milestone in the history of modern insect control is marked by the discovery of neonicotinoid insecticides (Maienfisch, 2006). In 1998 Novartis launched thiamethoxam as a novel second generation neonicotinoid with a unique structure and outstanding insecticidal activity (Maienfisch et al., 2001). The major natural metabolite of thiamethoxam is the title compound, which is thiamethoxam urea derivative (Suchail et al., 2001, Ford & Casida, 2006)

In the title compound (Fig.1) all bond lengths and angles are normal and correspond to those observed in the related structure (Chopra et al., 2004). The oxadiazinane ring is in a sofa conformation [asymmetry parameter: ΔCs(O1—C4) = 7.47 (Duax & Norton, 1975)]. In the crystal, the displacement of the atom O1 from the plane defined by atoms C2/N3/C4/N5/C6 is -0.636 (2) Å. In thiametoxam and the title compound the two molecular fragments bridged by the methylene group are similarly oriented. C—H···O hydrogen bonds link molecules to form chains along b axis(Fig.2).

Experimental

Thiamethoxam (0.291 g, 0.001 mol) was dissolved in 5 ml methanol and to it 5 ml of 1 N K2CO3 solution was added. The reaction mixture was refluxed for about 10 h on a water bath at 343 K and then cooled. The reaction mixture was neutralized with 1 N HCl solution, until the solid compound was separated out. The synthesized compound was dissolved in minimum amount of methanol and was kept standing for slow evaporation until colourless transparent crystals were formed (m.p. = 372 K).

Refinement

All H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Figures

Fig. 1.

Fig. 1.

ORTEP view of the molecule with the atom-labeling scheme. The thermal ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

The packing arrangement of molecules viewed down the a axis. The dotted lines show intermolecular C—H···O hydrogen bonds.

Crystal data

C8H10ClN3O2S F(000) = 512
Mr = 247.70 Dx = 1.508 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 11280 reflections
a = 4.6141 (2) Å θ = 3.5–29.0°
b = 11.7335 (4) Å µ = 0.53 mm1
c = 20.1460 (8) Å T = 293 K
V = 1090.70 (7) Å3 Needle, white
Z = 4 0.3 × 0.2 × 0.2 mm

Data collection

Oxford Diffraction Xcalibur Sapphire3 diffractometer 2147 independent reflections
Radiation source: fine-focus sealed tube 1974 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.034
Detector resolution: 16.1049 pixels mm-1 θmax = 26.0°, θmin = 3.5°
ω scan h = −5→5
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) k = −14→14
Tmin = 0.925, Tmax = 1.000 l = −24→24
22323 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031 H-atom parameters constrained
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0399P)2 + 0.2799P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.001
2147 reflections Δρmax = 0.22 e Å3
137 parameters Δρmin = −0.16 e Å3
0 restraints Absolute structure: Flack (1983), 856 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.04 (9)

Special details

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.29172 (13) 0.85031 (5) 0.83926 (3) 0.04611 (15)
Cl1 0.64157 (15) 0.83860 (6) 0.96232 (3) 0.0642 (2)
O1 0.4809 (4) 1.08899 (16) 0.64448 (10) 0.0653 (5)
C2 0.2262 (7) 1.1021 (2) 0.68003 (16) 0.0668 (8)
H2A 0.0844 1.1412 0.6527 0.080*
H2B 0.2630 1.1487 0.7189 0.080*
N3 0.1108 (5) 0.99332 (17) 0.70052 (10) 0.0512 (5)
C4 0.1836 (6) 0.8940 (2) 0.67011 (12) 0.0516 (6)
N5 0.3433 (6) 0.90503 (19) 0.61443 (11) 0.0640 (6)
C6 0.4364 (9) 1.0158 (3) 0.59173 (14) 0.0778 (9)
H6A 0.6149 1.0079 0.5667 0.093*
H6B 0.2905 1.0475 0.5624 0.093*
C7 −0.0657 (6) 0.9905 (3) 0.76014 (14) 0.0613 (7)
H7A −0.2048 0.9289 0.7564 0.074*
H7B −0.1734 1.0613 0.7634 0.074*
O7 0.1066 (5) 0.80128 (15) 0.69297 (10) 0.0744 (6)
C8 0.4470 (9) 0.8075 (3) 0.57872 (19) 0.0975 (12)
H8A 0.3872 0.7392 0.6012 0.146*
H8B 0.6547 0.8098 0.5765 0.146*
H8C 0.3684 0.8080 0.5346 0.146*
C9 0.1052 (5) 0.9747 (2) 0.82176 (12) 0.0494 (6)
C10 0.4123 (5) 0.9127 (2) 0.91085 (12) 0.0484 (6)
N11 0.3276 (6) 1.01443 (19) 0.92255 (12) 0.0692 (7)
C12 0.1516 (7) 1.0488 (2) 0.87096 (15) 0.0680 (8)
H12 0.0683 1.1210 0.8704 0.082*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0529 (3) 0.0353 (2) 0.0501 (3) 0.0000 (2) 0.0022 (2) 0.0000 (2)
Cl1 0.0651 (4) 0.0728 (4) 0.0546 (4) −0.0027 (4) −0.0063 (3) 0.0091 (3)
O1 0.0633 (11) 0.0579 (11) 0.0748 (12) −0.0128 (9) −0.0003 (10) 0.0120 (10)
C2 0.0732 (18) 0.0395 (12) 0.088 (2) 0.0011 (13) 0.0047 (16) 0.0129 (13)
N3 0.0552 (12) 0.0421 (10) 0.0563 (12) −0.0002 (9) 0.0042 (10) 0.0105 (9)
C4 0.0570 (13) 0.0446 (11) 0.0533 (14) −0.0083 (11) −0.0123 (13) 0.0084 (11)
N5 0.0871 (17) 0.0551 (13) 0.0499 (12) −0.0056 (13) 0.0064 (12) −0.0020 (10)
C6 0.102 (3) 0.079 (2) 0.0529 (17) −0.0165 (19) 0.0084 (16) 0.0135 (15)
C7 0.0480 (14) 0.0691 (16) 0.0669 (17) 0.0082 (13) 0.0019 (12) 0.0110 (14)
O7 0.1021 (17) 0.0435 (9) 0.0775 (13) −0.0221 (11) −0.0017 (13) 0.0082 (9)
C8 0.121 (3) 0.089 (2) 0.083 (2) 0.003 (2) 0.011 (2) −0.025 (2)
C9 0.0472 (13) 0.0450 (12) 0.0561 (14) 0.0058 (10) 0.0112 (11) 0.0061 (11)
C10 0.0505 (13) 0.0459 (13) 0.0487 (13) −0.0061 (11) 0.0058 (11) 0.0009 (10)
N11 0.0892 (19) 0.0501 (12) 0.0683 (15) 0.0053 (13) 0.0002 (14) −0.0144 (11)
C12 0.087 (2) 0.0429 (14) 0.0741 (19) 0.0176 (14) 0.0026 (17) −0.0061 (12)

Geometric parameters (Å, º)

S1—C10 1.710 (2) N5—C6 1.443 (4)
S1—C9 1.731 (2) C6—H6A 0.9700
Cl1—C10 1.718 (3) C6—H6B 0.9700
O1—C6 1.382 (4) C7—C9 1.482 (4)
O1—C2 1.385 (4) C7—H7A 0.9700
C2—N3 1.443 (3) C7—H7B 0.9700
C2—H2A 0.9700 C8—H8A 0.9600
C2—H2B 0.9700 C8—H8B 0.9600
N3—C4 1.359 (3) C8—H8C 0.9600
N3—C7 1.452 (3) C9—C12 1.336 (4)
C4—O7 1.233 (3) C10—N11 1.278 (3)
C4—N5 1.348 (3) N11—C12 1.379 (4)
N5—C8 1.434 (4) C12—H12 0.9300
C10—S1—C9 88.42 (12) N3—C7—C9 113.4 (2)
C6—O1—C2 109.9 (2) N3—C7—H7A 108.9
O1—C2—N3 111.3 (2) C9—C7—H7A 108.9
O1—C2—H2A 109.4 N3—C7—H7B 108.9
N3—C2—H2A 109.4 C9—C7—H7B 108.9
O1—C2—H2B 109.4 H7A—C7—H7B 107.7
N3—C2—H2B 109.4 N5—C8—H8A 109.5
H2A—C2—H2B 108.0 N5—C8—H8B 109.5
C4—N3—C2 122.6 (2) H8A—C8—H8B 109.5
C4—N3—C7 119.5 (2) N5—C8—H8C 109.5
C2—N3—C7 117.6 (2) H8A—C8—H8C 109.5
O7—C4—N5 123.6 (2) H8B—C8—H8C 109.5
O7—C4—N3 121.1 (2) C12—C9—C7 128.7 (2)
N5—C4—N3 115.3 (2) C12—C9—S1 108.5 (2)
C4—N5—C8 121.5 (3) C7—C9—S1 122.7 (2)
C4—N5—C6 120.9 (2) N11—C10—S1 117.1 (2)
C8—N5—C6 117.4 (3) N11—C10—Cl1 123.4 (2)
O1—C6—N5 111.1 (2) S1—C10—Cl1 119.52 (14)
O1—C6—H6A 109.4 C10—N11—C12 108.3 (2)
N5—C6—H6A 109.4 C9—C12—N11 117.6 (2)
O1—C6—H6B 109.4 C9—C12—H12 121.2
N5—C6—H6B 109.4 N11—C12—H12 121.2
H6A—C6—H6B 108.0
C6—O1—C2—N3 54.5 (3) C4—N3—C7—C9 85.9 (3)
O1—C2—N3—C4 −20.9 (4) C2—N3—C7—C9 −87.9 (3)
O1—C2—N3—C7 152.7 (2) N3—C7—C9—C12 111.4 (3)
C2—N3—C4—O7 172.1 (3) N3—C7—C9—S1 −66.6 (3)
C7—N3—C4—O7 −1.3 (4) C10—S1—C9—C12 −0.2 (2)
C2—N3—C4—N5 −7.7 (4) C10—S1—C9—C7 178.1 (2)
C7—N3—C4—N5 178.8 (2) C9—S1—C10—N11 0.3 (2)
O7—C4—N5—C8 −2.7 (5) C9—S1—C10—Cl1 −178.75 (16)
N3—C4—N5—C8 177.2 (3) S1—C10—N11—C12 −0.2 (3)
O7—C4—N5—C6 −177.5 (3) Cl1—C10—N11—C12 178.8 (2)
N3—C4—N5—C6 2.4 (4) C7—C9—C12—N11 −178.0 (3)
C2—O1—C6—N5 −59.9 (4) S1—C9—C12—N11 0.2 (4)
C4—N5—C6—O1 31.4 (4) C10—N11—C12—C9 0.0 (4)
C8—N5—C6—O1 −143.6 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C12—H12···O7i 0.93 2.60 3.443 (3) 151

Symmetry code: (i) −x, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2519).

References

  1. Chopra, D., Mohan, T. P., Rao, K. S. & Guru Row, T. N. (2004). Acta Cryst. E60, o2413–o2414.
  2. Duax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, Vol. 1. New York: Plenum Press.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Ford, K. A. & Casida, J. E. (2006). Chem. Res. Toxicol. 19, 1549–1556. [DOI] [PubMed]
  6. Maienfisch, P. (2006). Z. Naturforsch Teil B, 61, 353-359.
  7. Maienfisch, P., Huerlimann, H., Rindlisbacher, A., Gsell, L., Dettwiler, H., Haettenschwiler, J., Sieger, E. & Walti, M. (2001). Pest. Manag. Sci. 57, 165–176. [DOI] [PubMed]
  8. Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Suchail, S., De Sousa, G. & Belzunces, L. P. (2001). Environ. Toxicol. Chem. 20, 2482–2486. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536812042031/gk2519sup1.cif

e-68-o3109-sup1.cif (19.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812042031/gk2519Isup2.hkl

e-68-o3109-Isup2.hkl (103.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812042031/gk2519Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES