Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Oct 13;68(Pt 11):o3110. doi: 10.1107/S160053681204202X

(2E)-3-(Dimethyl­amino)-1-(4-fluoro­phen­yl)prop-2-en-1-one

Rajni Kant a,*, Vivek K Gupta a, Kamini Kapoor a, Madhukar B Deshmukh b, D R Patil b, P V Anbhule b
PMCID: PMC3515216  PMID: 23284436

Abstract

In the title compound, C11H12FNO, the dihedral angle between the prop-2-en-1-one group and the benzene ring is 19.33 (6)°. The configuration of the keto group with respect to the olefinic double bond is s-cis. In the crystal, the mol­ecules form dimers through aromatic π–π stacking inter­actions [centroid–centroid distance = 3.667 (1) Å] and are linked via C—H⋯O inter­actions into chains along the b axis.

Related literature  

For the synthesis and pharmaceutical activity of enamino­nes, see: Kantevari et al. (2007); Ke et al. (2009); Omran et al. (1997); Eddington et al. (2003). For a related structure, see: Deng et al. (2010).graphic file with name e-68-o3110-scheme1.jpg

Experimental  

Crystal data  

  • C11H12FNO

  • M r = 193.22

  • Monoclinic, Inline graphic

  • a = 13.2832 (6) Å

  • b = 5.8530 (2) Å

  • c = 14.2995 (8) Å

  • β = 116.086 (6)°

  • V = 998.49 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.2 mm

Data collection  

  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) T min = 0.824, T max = 1.000

  • 14183 measured reflections

  • 1952 independent reflections

  • 1430 reflections with I > 2σ(I)

  • R int = 0.040

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.133

  • S = 1.04

  • 1952 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S160053681204202X/gk2520sup1.cif

e-68-o3110-sup1.cif (19.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681204202X/gk2520Isup2.hkl

e-68-o3110-Isup2.hkl (94.1KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681204202X/gk2520Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6B⋯O1i 0.96 2.59 3.531 (3) 168

Symmetry code: (i) Inline graphic.

Acknowledgments

RK acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003. He is also thankful to the University of Jammu, Jammu, India, for financial support.

supplementary crystallographic information

Comment

(2E)-3-(Dimethylamino)-1-(4-fluorophenyl)prop-2-en-1-one is a versatile substrate used for synthesis of number of heterocyclic compounds and drug intermediates (Kantevari et al., 2007; Ke et al., 2009; Omran et al., 1997; Eddington et al., 2003).

The molecular structure of the title compound (I) is shown in Fig.1. The bond lengths and angles observed in (I) show normal values and are comparable with a related structure (Deng et al., 2010). The dihedral angle between prop-2-en-1-one group and the phenyl ring is 19.33 (6) °. Molecules in the unit cell are packed together to form one dimensional assembly along the b axis (Fig.2) through intermolecular C6—H6B···O1 interactions (Table 1). The crystal structure is further stabilized by π–π interactions between the benzene ring (C7—C12) of the molecule at (x, y, z) and the benzene ring of an inversion related molecule at (- x, - y, -z)[centroid separation = 3.667 (1) Å, interplanar spacing = 3.535 Å and centroid shift = 0.97 Å].

Experimental

In a 50 ml round bottom flask charged with 5 mmole of 4-methyl acetophenone and 5 mmole of dimethylformamide dimethyl acetal. Then 10 ml toulene was added and the reaction mixture was stirred for 3 h at 110°C. The reaction was monitored by TLC. After completion of reaction and cooling the reaction mixture was evaporated under vacuum. Finally, the product was isolated by column chromatography using ethyl acetate and n-hexane(2/8 vol.). Yield: 85%. IR(KBr): 1643, 1598, 1550,1439 cm-1. 1H NMR (300 MHz, CDCl3): 2.93(s, 3H, N—CH3), 3.15(s, 3H, N—CH3), 5.65–5.69 (d, 1H, =CH), 7.79–7.83(d, 1H,=CH), 7.05–7.11(m, 2H, Ar—H), 7.89–7.94 (m, 2H, Ar—H).

Refinement

All H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93–0.96 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Figures

Fig. 1.

Fig. 1.

ORTEP view of the molecule with the atom-labeling scheme. The displacement ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

The packing arrangement of molecules viewed down the a axis. The broken lines show the intermolecular C—H···O interactions.

Crystal data

C11H12FNO F(000) = 408
Mr = 193.22 Dx = 1.285 Mg m3
Monoclinic, P21/c Melting point = 336–335 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 13.2832 (6) Å Cell parameters from 5766 reflections
b = 5.8530 (2) Å θ = 3.5–29.0°
c = 14.2995 (8) Å µ = 0.10 mm1
β = 116.086 (6)° T = 293 K
V = 998.49 (8) Å3 Block, yellow
Z = 4 0.3 × 0.2 × 0.2 mm

Data collection

Oxford Diffraction Xcalibur Sapphire3 diffractometer 1952 independent reflections
Radiation source: fine-focus sealed tube 1430 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.040
Detector resolution: 16.1049 pixels mm-1 θmax = 26.0°, θmin = 3.5°
ω scan h = −16→16
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) k = −7→7
Tmin = 0.824, Tmax = 1.000 l = −17→17
14183 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0668P)2 + 0.1767P] where P = (Fo2 + 2Fc2)/3
1952 reflections (Δ/σ)max = 0.002
129 parameters Δρmax = 0.20 e Å3
0 restraints Δρmin = −0.16 e Å3

Special details

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C7 0.14077 (14) 0.3879 (3) 0.44568 (12) 0.0387 (4)
F1 −0.19144 (9) 0.5459 (2) 0.27506 (10) 0.0802 (4)
O1 0.28148 (11) 0.1122 (2) 0.52645 (12) 0.0752 (5)
C1 0.26094 (15) 0.3183 (3) 0.50936 (13) 0.0463 (4)
C2 0.34503 (14) 0.4916 (3) 0.54818 (13) 0.0457 (4)
H2 0.3259 0.6447 0.5332 0.055*
C3 0.45299 (14) 0.4299 (3) 0.60714 (13) 0.0489 (5)
H3 0.4653 0.2738 0.6186 0.059*
N4 0.54383 (12) 0.5600 (2) 0.65100 (12) 0.0548 (5)
C5 0.53933 (17) 0.8047 (3) 0.63606 (18) 0.0656 (6)
H5A 0.5800 0.8453 0.5972 0.098*
H5B 0.5724 0.8793 0.7026 0.098*
H5C 0.4627 0.8520 0.5985 0.098*
C6 0.65389 (16) 0.4629 (4) 0.71403 (17) 0.0689 (6)
H6A 0.6486 0.2993 0.7130 0.103*
H6B 0.6810 0.5165 0.7844 0.103*
H6C 0.7048 0.5088 0.6863 0.103*
C8 0.05728 (15) 0.2340 (3) 0.43627 (13) 0.0460 (4)
H8 0.0773 0.0921 0.4684 0.055*
C9 −0.05434 (15) 0.2869 (3) 0.38041 (14) 0.0510 (5)
H9 −0.1098 0.1845 0.3761 0.061*
C10 −0.08165 (14) 0.4935 (3) 0.33139 (13) 0.0476 (5)
C11 −0.00276 (15) 0.6494 (3) 0.33688 (13) 0.0468 (5)
H11 −0.0240 0.7880 0.3018 0.056*
C12 0.10921 (14) 0.5974 (3) 0.39551 (13) 0.0424 (4)
H12 0.1638 0.7035 0.4014 0.051*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C7 0.0408 (9) 0.0342 (8) 0.0392 (8) −0.0007 (7) 0.0158 (7) −0.0018 (7)
F1 0.0383 (7) 0.0777 (9) 0.1045 (10) 0.0076 (6) 0.0130 (7) 0.0085 (7)
O1 0.0530 (9) 0.0379 (7) 0.1041 (12) 0.0033 (6) 0.0066 (8) 0.0109 (7)
C1 0.0446 (10) 0.0361 (9) 0.0504 (10) 0.0021 (7) 0.0136 (8) 0.0031 (7)
C2 0.0405 (10) 0.0367 (9) 0.0522 (10) 0.0028 (7) 0.0134 (8) 0.0008 (7)
C3 0.0454 (11) 0.0380 (9) 0.0542 (10) 0.0017 (8) 0.0134 (8) −0.0009 (8)
N4 0.0370 (8) 0.0433 (9) 0.0680 (10) 0.0025 (7) 0.0082 (7) −0.0015 (7)
C5 0.0526 (12) 0.0458 (11) 0.0848 (15) −0.0024 (9) 0.0179 (11) −0.0022 (10)
C6 0.0416 (11) 0.0642 (13) 0.0804 (14) 0.0076 (10) 0.0080 (10) 0.0013 (11)
C8 0.0483 (10) 0.0364 (9) 0.0476 (10) −0.0037 (7) 0.0159 (8) 0.0032 (7)
C9 0.0436 (10) 0.0489 (10) 0.0585 (11) −0.0102 (8) 0.0206 (9) −0.0012 (8)
C10 0.0363 (9) 0.0504 (10) 0.0501 (10) 0.0031 (8) 0.0134 (8) −0.0041 (8)
C11 0.0483 (10) 0.0382 (9) 0.0496 (10) 0.0068 (8) 0.0175 (8) 0.0034 (7)
C12 0.0410 (9) 0.0368 (9) 0.0487 (9) −0.0023 (7) 0.0191 (8) 0.0013 (7)

Geometric parameters (Å, º)

C7—C8 1.389 (2) C5—H5B 0.9600
C7—C12 1.389 (2) C5—H5C 0.9600
C7—C1 1.505 (2) C6—H6A 0.9600
F1—C10 1.355 (2) C6—H6B 0.9600
O1—C1 1.237 (2) C6—H6C 0.9600
C1—C2 1.428 (2) C8—C9 1.375 (2)
C2—C3 1.354 (2) C8—H8 0.9300
C2—H2 0.9300 C9—C10 1.365 (3)
C3—N4 1.328 (2) C9—H9 0.9300
C3—H3 0.9300 C10—C11 1.365 (3)
N4—C5 1.445 (2) C11—C12 1.382 (2)
N4—C6 1.454 (2) C11—H11 0.9300
C5—H5A 0.9600 C12—H12 0.9300
C8—C7—C12 118.41 (16) N4—C6—H6A 109.5
C8—C7—C1 118.20 (15) N4—C6—H6B 109.5
C12—C7—C1 123.39 (16) H6A—C6—H6B 109.5
O1—C1—C2 123.30 (16) N4—C6—H6C 109.5
O1—C1—C7 117.81 (16) H6A—C6—H6C 109.5
C2—C1—C7 118.89 (14) H6B—C6—H6C 109.5
C3—C2—C1 119.05 (16) C9—C8—C7 121.44 (16)
C3—C2—H2 120.5 C9—C8—H8 119.3
C1—C2—H2 120.5 C7—C8—H8 119.3
N4—C3—C2 129.38 (17) C10—C9—C8 118.23 (17)
N4—C3—H3 115.3 C10—C9—H9 120.9
C2—C3—H3 115.3 C8—C9—H9 120.9
C3—N4—C5 121.90 (15) F1—C10—C9 118.63 (16)
C3—N4—C6 121.72 (16) F1—C10—C11 118.78 (16)
C5—N4—C6 116.35 (16) C9—C10—C11 122.59 (16)
N4—C5—H5A 109.5 C10—C11—C12 118.80 (16)
N4—C5—H5B 109.5 C10—C11—H11 120.6
H5A—C5—H5B 109.5 C12—C11—H11 120.6
N4—C5—H5C 109.5 C11—C12—C7 120.49 (16)
H5A—C5—H5C 109.5 C11—C12—H12 119.8
H5B—C5—H5C 109.5 C7—C12—H12 119.8
C8—C7—C1—O1 19.2 (3) C1—C7—C8—C9 179.18 (16)
C12—C7—C1—O1 −160.52 (17) C7—C8—C9—C10 1.8 (3)
C8—C7—C1—C2 −159.98 (17) C8—C9—C10—F1 179.16 (15)
C12—C7—C1—C2 20.4 (3) C8—C9—C10—C11 −0.8 (3)
O1—C1—C2—C3 −0.3 (3) F1—C10—C11—C12 179.12 (15)
C7—C1—C2—C3 178.80 (16) C9—C10—C11—C12 −0.9 (3)
C1—C2—C3—N4 −179.93 (18) C10—C11—C12—C7 1.6 (3)
C2—C3—N4—C5 −3.2 (3) C8—C7—C12—C11 −0.6 (3)
C2—C3—N4—C6 178.8 (2) C1—C7—C12—C11 179.03 (15)
C12—C7—C8—C9 −1.1 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C6—H6B···O1i 0.96 2.59 3.531 (3) 168

Symmetry code: (i) −x+1, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2520).

References

  1. Deng, J., Shen, D. & Zhou, Z. (2010). Acta Cryst. E66, o2. [DOI] [PMC free article] [PubMed]
  2. Eddington, N. D., Cox, S. D. & Khurana, M. (2003). Eur. J. Med. Chem. 38, 49–64. [DOI] [PubMed]
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Kantevari, S., Chary, M. V. & Vuppalapati, S. V. N. (2007). Tetrahedron, 63, 13024–13031.
  5. Ke, Y. Y., Li, Y. J. & Jia, J. H. (2009). Tetrahedron Lett. 50, 1389–1391.
  6. Omran, F. A., Awadi, N. A., Khair, A. A. E. & Elnagdi, M. H. (1997). Org. Prep. Proced. Int. 65, 285–292.
  7. Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S160053681204202X/gk2520sup1.cif

e-68-o3110-sup1.cif (19.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681204202X/gk2520Isup2.hkl

e-68-o3110-Isup2.hkl (94.1KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681204202X/gk2520Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES