Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Oct 13;68(Pt 11):o3111. doi: 10.1107/S1600536812040731

rac-(Z)-Methyl 1-benzyl-3-[(3-hy­droxy­quinuclidin-2-yl­idene)meth­yl]-1H-indole-6-carboxyl­ate

Narsimha Reddy Penthala a, Purushotham Rao Ponugoti a, Sean Parkin b, Peter A Crooks a,*
PMCID: PMC3515217  PMID: 23284437

Abstract

In the title compound, C25H26N2O3, the double bond connecting the aza-bicyclic and indole units has Z geometry. The compound was obtained as a racemate, and since the crystal is centrosymmetric it contains equal amounts of the S and R enanti­omers. However, the structure is disordered such that the asymmetric unit contains both enanti­omers in unequal amounts [refined occupancies 0.904 (2) and 0.096 (2)]. The dihedral angle between the benzene ring of the benzyl group and the mean plane of the indole ring is 76.07 (3) °. In the crystal, mol­ecules are linked by O—H⋯Ocarbon­yl hydrogen bonds into chains propagating in [110].

Related literature  

For background literature, see: Sekhar et al., (2003), Amudhan et al., (2010). For the biological activity of N-benzyl indole quinuclidinone, see: Sonar et al. (2007). For a similar crystal structure, see: Sonar et al., (2004).graphic file with name e-68-o3111-scheme1.jpg

Experimental  

Crystal data  

  • C25H26N2O3

  • M r = 402.48

  • Triclinic, Inline graphic

  • a = 6.1619 (1) Å

  • b = 10.3119 (2) Å

  • c = 16.5959 (3) Å

  • α = 75.6705 (7)°

  • β = 80.0939 (7)°

  • γ = 85.9410 (7)°

  • V = 1006.04 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 90 K

  • 0.28 × 0.22 × 0.12 mm

Data collection  

  • Nonius KappaCCD diffractometer

  • 9126 measured reflections

  • 4597 independent reflections

  • 3831 reflections with I > 2σ(I)

  • R int = 0.024

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.102

  • S = 1.04

  • 4597 reflections

  • 312 parameters

  • 64 restraints

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 and local procedures.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812040731/hg5242sup1.cif

e-68-o3111-sup1.cif (28KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812040731/hg5242Isup2.hkl

e-68-o3111-Isup2.hkl (225.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2i 0.84 1.97 2.7989 (13) 169

Symmetry code: (i) Inline graphic.

Acknowledgments

This investigation was supported by NIH/National Cancer Institute grant PO1 CA140409.

supplementary crystallographic information

Comment

The N-benzyl indole quinuclidin-3-one moiety has been found to possess interesting biological properties which range from NADPH oxidase activity (Sekhar et al., 2003), thermal sensitizing activity to radiation treatment (Sonar et al., 2007), and also exhibit antiangiogenic properties (Amudhan et al., 2010). Previously, we reported the crystal structure of Z-(S)-2-(1- phenylsulfonyl-1H-indol-3-ylmethylene)-1-azabicyclo[2.2.2]octan-3-ol (Sonar et al., 2004) and in continuation of our research work on the N-benzyl indole quinuclidin-3-one scaffold (Sonar et al., 2007) we designed and synthesized a novel series of carboxymethyl N-benzyl indole quinuclidin-3-ones as potent anticancer agents. The title compound was prepared by the reduction of Z-methyl 1-benzyl-3-[(3-oxoquinuclidin-2-ylidene)methyl]-1H-indole-6-carboxylate with NaBH4 in methanol at room temperature (Sonar et al., 2004). Recrystallization of the title compound from methanol afforded colorless needles that were suitable for X-ray analysis.

The X-ray studies revealed that the title compound is the Z isomer having the C2—C18 bond in a trans position with respect to the C19—C20 bond. The double bond (C18═C19) has a nearly planar atomic arrangement, since the r.m.s. deviation from the best plane passing through atoms N2, C19, C20, C18 and C2 is 0.265 (1) Å. In this molecule, the azabicyclic system presents very small distortions around atoms N2, C24, C21, C22, C23 and C20. The value of the C1—C2—C18—C19 torsion angle [-5.1 (2)°] indicates the deviation of the indole ring from the plane of the double bond connected to the azabicyclic ring. The dihedral angle between the benzene ring of the benzyl group and with the mean plane of the indole ring is 76.07 (3) Å. The crystal of the title compound is a racemic equimolar mixture of R and S configurations. However, the structure is disordered such that the asymmetric unit contains both enantiomers, but in unequal amounts [refined occupancies 0.904 (2) and 0.096 (2)]. The hydrogen atom of the disordered OH group is involved in an intermolecular hydrogen bond with the carbonyl oxygen O2 on an adjacent molecule, thus forming an infinite chain-like structure along the (110) direction.

Experimental

The compound Z-methyl 1-benzyl-3-[(3-oxoquinuclidin-2-ylidene)methyl] -1H-indole-6-carboxylate was prepared by the available literature procedure (Sonar et al., 2004). To a stirred solution of Z-methyl 1-benzyl-3-((3-oxoquinuclidin-2-ylidene)methyl)-1H-indole-6-carboxylate (0.40 g, 1 mmol) in methanol (15 ml) at 273 K was added NaBH4 (0.38 g, 10 mmol) over a period of 15 min and stirring was continued for 2 h at room temperature. Water (50 ml) was added and the mixture was extracted with CHCl3 (3 times 10 ml). The combined organic layers were dried over Na2SO4 and evaporated to give the title compound as a white solid. Recrystallization from methanol afforded colorless needles suitable for X-ray analysis.

Refinement

H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained distances of 0.98 Å (RCH3), 0.99 Å (R2CH2), 1.00 Å (R3CH), 0.95 Å (Csp2H), 0.84 Å (O—H), and with Uiso(H) values set to either 1.2Ueq or 1.5Ueq (RCH3, OH) of the attached atom.

To ensure satisfactory refinement of the disordered parts of the structure, restraints were needed. The restraints (SHELXL97 commands SAME, DELU, SAME) were used to ensure similar geometries and displacement parameters of closely proximate, chemically similar groups.

Figures

Fig. 1.

Fig. 1.

A view of the molecule with displacement ellipsoids drawn at the 50% probability level.

Crystal data

C25H26N2O3 Z = 2
Mr = 402.48 F(000) = 428
Triclinic, P1 Dx = 1.329 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.1619 (1) Å Cell parameters from 4571 reflections
b = 10.3119 (2) Å θ = 1.0–27.5°
c = 16.5959 (3) Å µ = 0.09 mm1
α = 75.6705 (7)° T = 90 K
β = 80.0939 (7)° Block, yellow
γ = 85.9410 (7)° 0.28 × 0.22 × 0.12 mm
V = 1006.04 (3) Å3

Data collection

Nonius KappaCCD diffractometer 3831 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.024
Graphite monochromator θmax = 27.5°, θmin = 2.0°
Detector resolution: 9.1 pixels mm-1 h = −8→8
ω scans at fixed χ = 55° k = −13→13
9126 measured reflections l = −21→21
4597 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039 H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0442P)2 + 0.3522P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
4597 reflections Δρmax = 0.27 e Å3
312 parameters Δρmin = −0.20 e Å3
64 restraints Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.023 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against all reflections. The weighted R-value wR and goodness of fit S are based on F2. Conventional R-values R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-values based on F2 are statistically about twice as large as those based on F, and R-values based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N1 0.31767 (16) 0.66937 (10) 0.24130 (6) 0.0190 (2)
O2 1.05912 (15) 0.90627 (9) 0.09629 (6) 0.0280 (2)
O3 1.17472 (13) 0.78520 (8) 0.00096 (5) 0.0213 (2)
C1 0.1919 (2) 0.56139 (12) 0.24673 (7) 0.0196 (2)
H1 0.0613 0.5379 0.2861 0.024*
C2 0.28163 (19) 0.49219 (11) 0.18719 (7) 0.0181 (2)
C3 0.47803 (19) 0.56153 (11) 0.14234 (7) 0.0172 (2)
C4 0.64453 (19) 0.53937 (11) 0.07749 (7) 0.0180 (2)
H4 0.6356 0.4677 0.0517 0.022*
C5 0.82107 (19) 0.62300 (11) 0.05167 (7) 0.0182 (2)
H5 0.9329 0.6092 0.0072 0.022*
C6 0.83869 (19) 0.72871 (11) 0.08999 (7) 0.0171 (2)
C7 0.67658 (19) 0.75346 (11) 0.15415 (7) 0.0181 (2)
H7 0.6879 0.8245 0.1802 0.022*
C8 0.49701 (19) 0.67018 (11) 0.17875 (7) 0.0171 (2)
C9 1.03202 (19) 0.81587 (11) 0.06408 (7) 0.0184 (2)
C10 1.3663 (2) 0.86728 (12) −0.02905 (8) 0.0230 (3)
H10A 1.3191 0.9616 −0.0455 0.035*
H10B 1.4539 0.8408 −0.0779 0.035*
H10C 1.4557 0.8552 0.0159 0.035*
C11 0.2901 (2) 0.75327 (12) 0.30102 (8) 0.0212 (3)
H11A 0.1373 0.7463 0.3319 0.025*
H11B 0.3117 0.8477 0.2696 0.025*
C12 0.4496 (2) 0.71600 (12) 0.36448 (7) 0.0196 (3)
C13 0.4619 (2) 0.79843 (13) 0.41841 (8) 0.0248 (3)
H13 0.3700 0.8769 0.4156 0.030*
C14 0.6069 (2) 0.76729 (14) 0.47622 (8) 0.0302 (3)
H14 0.6149 0.8250 0.5122 0.036*
C15 0.7402 (2) 0.65246 (15) 0.48175 (8) 0.0307 (3)
H15 0.8390 0.6309 0.5215 0.037*
C16 0.7282 (2) 0.56959 (14) 0.42883 (8) 0.0300 (3)
H16 0.8186 0.4905 0.4325 0.036*
C17 0.5845 (2) 0.60137 (13) 0.37025 (8) 0.0250 (3)
H17 0.5786 0.5441 0.3338 0.030*
C18 0.2112 (2) 0.36924 (12) 0.17230 (7) 0.0203 (3)
H18 0.2905 0.3426 0.1244 0.024*
C19 0.0490 (3) 0.28894 (14) 0.21750 (9) 0.0190 (3) 0.904 (2)
C20 0.0007 (2) 0.15731 (14) 0.19936 (9) 0.0204 (3) 0.904 (2)
H20 −0.0961 0.1753 0.1550 0.025* 0.904 (2)
O1 0.20291 (17) 0.09447 (10) 0.16992 (7) 0.0268 (3) 0.904 (2)
H1A 0.1766 0.0378 0.1445 0.040* 0.904 (2)
C21 −0.1226 (3) 0.07182 (18) 0.28158 (11) 0.0203 (4) 0.904 (2)
H21 −0.1372 −0.0216 0.2763 0.024* 0.904 (2)
C22 0.0068 (3) 0.07145 (14) 0.35275 (9) 0.0237 (3) 0.904 (2)
H22A 0.1614 0.0414 0.3378 0.028* 0.904 (2)
H22B −0.0598 0.0092 0.4054 0.028* 0.904 (2)
C23 −0.0005 (3) 0.2159 (2) 0.36551 (10) 0.0232 (3) 0.904 (2)
H23A −0.0995 0.2201 0.4186 0.028* 0.904 (2)
H23B 0.1488 0.2397 0.3703 0.028* 0.904 (2)
N2 −0.0804 (3) 0.31334 (13) 0.29406 (9) 0.0209 (3) 0.904 (2)
C24 −0.3148 (3) 0.28641 (16) 0.29584 (10) 0.0258 (4) 0.904 (2)
H24A −0.3657 0.3432 0.2447 0.031* 0.904 (2)
H24B −0.4054 0.3110 0.3455 0.031* 0.904 (2)
C25 −0.3496 (2) 0.13790 (14) 0.29981 (9) 0.0243 (3) 0.904 (2)
H25A −0.4259 0.0929 0.3563 0.029* 0.904 (2)
H25B −0.4408 0.1311 0.2575 0.029* 0.904 (2)
C19' 0.116 (2) 0.2718 (12) 0.2322 (7) 0.013 (3)* 0.096 (2)
C20' 0.080 (3) 0.1336 (14) 0.2189 (9) 0.033 (4)* 0.096 (2)
H20' 0.1935 0.0690 0.2434 0.039* 0.096 (2)
O1' 0.1065 (19) 0.1428 (11) 0.1316 (6) 0.035 (3)* 0.096 (2)
H1' 0.0220 0.0896 0.1222 0.052* 0.096 (2)
C21' −0.148 (3) 0.0902 (19) 0.2671 (11) 0.039 (5)* 0.096 (2)
H21' −0.1966 0.0125 0.2494 0.047* 0.096 (2)
C22' −0.124 (3) 0.0512 (14) 0.3604 (9) 0.036 (4)* 0.096 (2)
H22C −0.2711 0.0409 0.3964 0.044* 0.096 (2)
H22D −0.0383 −0.0339 0.3739 0.044* 0.096 (2)
C23' −0.005 (3) 0.1654 (15) 0.3737 (10) 0.022 (4)* 0.096 (2)
H23C −0.0666 0.1803 0.4300 0.027* 0.096 (2)
H23D 0.1519 0.1378 0.3743 0.027* 0.096 (2)
N2' −0.016 (2) 0.2938 (14) 0.3109 (8) 0.021 (3)* 0.096 (2)
C24' −0.240 (3) 0.3146 (15) 0.2931 (10) 0.022 (4)* 0.096 (2)
H24C −0.2543 0.4049 0.2558 0.026* 0.096 (2)
H24D −0.3418 0.3118 0.3465 0.026* 0.096 (2)
C25' −0.310 (2) 0.2096 (15) 0.2506 (10) 0.036 (4)* 0.096 (2)
H25C −0.4629 0.1816 0.2752 0.043* 0.096 (2)
H25D −0.3038 0.2475 0.1893 0.043* 0.096 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0196 (5) 0.0182 (5) 0.0198 (5) −0.0002 (4) −0.0017 (4) −0.0068 (4)
O2 0.0274 (5) 0.0277 (5) 0.0337 (5) −0.0079 (4) −0.0019 (4) −0.0166 (4)
O3 0.0178 (4) 0.0223 (4) 0.0242 (4) −0.0048 (3) −0.0004 (3) −0.0073 (3)
C1 0.0183 (6) 0.0188 (6) 0.0211 (6) −0.0006 (4) −0.0034 (5) −0.0034 (5)
C2 0.0179 (6) 0.0178 (5) 0.0182 (5) −0.0005 (4) −0.0045 (4) −0.0027 (4)
C3 0.0180 (6) 0.0162 (5) 0.0174 (5) 0.0000 (4) −0.0057 (4) −0.0023 (4)
C4 0.0208 (6) 0.0173 (5) 0.0177 (5) −0.0005 (4) −0.0047 (4) −0.0061 (4)
C5 0.0176 (6) 0.0194 (6) 0.0182 (5) 0.0007 (4) −0.0028 (4) −0.0058 (4)
C6 0.0177 (6) 0.0165 (5) 0.0178 (5) −0.0008 (4) −0.0060 (4) −0.0033 (4)
C7 0.0209 (6) 0.0156 (5) 0.0192 (6) 0.0006 (4) −0.0063 (5) −0.0055 (4)
C8 0.0181 (6) 0.0169 (5) 0.0163 (5) 0.0018 (4) −0.0039 (4) −0.0038 (4)
C9 0.0186 (6) 0.0181 (6) 0.0194 (6) 0.0008 (4) −0.0061 (5) −0.0048 (4)
C10 0.0173 (6) 0.0235 (6) 0.0273 (6) −0.0051 (5) −0.0028 (5) −0.0037 (5)
C11 0.0233 (6) 0.0190 (6) 0.0223 (6) 0.0025 (5) −0.0014 (5) −0.0088 (5)
C12 0.0206 (6) 0.0184 (6) 0.0179 (5) −0.0025 (4) 0.0014 (4) −0.0034 (4)
C13 0.0289 (7) 0.0210 (6) 0.0245 (6) −0.0008 (5) −0.0021 (5) −0.0070 (5)
C14 0.0375 (8) 0.0316 (7) 0.0244 (7) −0.0059 (6) −0.0052 (6) −0.0106 (5)
C15 0.0287 (7) 0.0395 (8) 0.0236 (6) −0.0015 (6) −0.0069 (5) −0.0052 (6)
C16 0.0288 (7) 0.0320 (7) 0.0263 (7) 0.0078 (6) −0.0034 (5) −0.0049 (6)
C17 0.0300 (7) 0.0230 (6) 0.0218 (6) 0.0029 (5) −0.0030 (5) −0.0069 (5)
C18 0.0220 (6) 0.0209 (6) 0.0191 (6) −0.0019 (5) −0.0033 (5) −0.0062 (5)
C19 0.0175 (7) 0.0211 (7) 0.0195 (7) 0.0005 (6) −0.0064 (6) −0.0048 (5)
C20 0.0179 (7) 0.0246 (7) 0.0207 (7) −0.0037 (5) −0.0028 (6) −0.0082 (5)
O1 0.0232 (5) 0.0290 (6) 0.0325 (6) −0.0072 (4) 0.0033 (4) −0.0194 (5)
C21 0.0188 (7) 0.0180 (7) 0.0250 (8) −0.0030 (5) −0.0025 (6) −0.0066 (6)
C22 0.0238 (8) 0.0230 (7) 0.0233 (7) 0.0025 (6) −0.0058 (6) −0.0035 (5)
C23 0.0242 (8) 0.0260 (9) 0.0215 (8) −0.0027 (7) −0.0035 (5) −0.0095 (7)
N2 0.0193 (8) 0.0196 (6) 0.0230 (7) −0.0018 (5) −0.0001 (6) −0.0055 (5)
C24 0.0156 (8) 0.0233 (8) 0.0344 (9) 0.0021 (6) −0.0008 (6) −0.0025 (6)
C25 0.0174 (7) 0.0251 (7) 0.0302 (8) −0.0037 (5) −0.0030 (5) −0.0059 (6)

Geometric parameters (Å, º)

N1—C1 1.3772 (15) C19—C20 1.5204 (18)
N1—C8 1.3787 (15) C20—O1 1.4296 (18)
N1—C11 1.4510 (15) C20—C21 1.536 (2)
O2—C9 1.2174 (14) C20—H20 1.0000
O3—C9 1.3334 (14) O1—H1A 0.8400
O3—C10 1.4450 (14) C21—C25 1.528 (2)
C1—C2 1.3771 (17) C21—C22 1.533 (2)
C1—H1 0.9500 C21—H21 1.0000
C2—C3 1.4419 (16) C22—C23 1.552 (2)
C2—C18 1.4583 (16) C22—H22A 0.9900
C3—C4 1.4042 (16) C22—H22B 0.9900
C3—C8 1.4185 (15) C23—N2 1.483 (2)
C4—C5 1.3784 (16) C23—H23A 0.9900
C4—H4 0.9500 C23—H23B 0.9900
C5—C6 1.4100 (15) N2—C24 1.484 (2)
C5—H5 0.9500 C24—C25 1.545 (2)
C6—C7 1.3890 (16) C24—H24A 0.9900
C6—C9 1.4819 (16) C24—H24B 0.9900
C7—C8 1.3907 (16) C25—H25A 0.9900
C7—H7 0.9500 C25—H25B 0.9900
C10—H10A 0.9800 C19'—N2' 1.473 (13)
C10—H10B 0.9800 C19'—C20' 1.532 (14)
C10—H10C 0.9800 C20'—O1' 1.410 (14)
C11—C12 1.5245 (17) C20'—C21' 1.525 (16)
C11—H11A 0.9900 C20'—H20' 1.0000
C11—H11B 0.9900 O1'—H1' 0.8400
C12—C17 1.3894 (17) C21'—C22' 1.530 (16)
C12—C13 1.3924 (17) C21'—C25' 1.534 (16)
C13—C14 1.3871 (19) C21'—H21' 1.0000
C13—H13 0.9500 C22'—C23' 1.511 (15)
C14—C15 1.386 (2) C22'—H22C 0.9900
C14—H14 0.9500 C22'—H22D 0.9900
C15—C16 1.382 (2) C23'—N2' 1.474 (14)
C15—H15 0.9500 C23'—H23C 0.9900
C16—C17 1.3906 (18) C23'—H23D 0.9900
C16—H16 0.9500 N2'—C24' 1.449 (14)
C17—H17 0.9500 C24'—C25' 1.552 (15)
C18—C19' 1.317 (11) C24'—H24C 0.9900
C18—C19 1.3414 (18) C24'—H24D 0.9900
C18—H18 0.9500 C25'—H25C 0.9900
C19—N2 1.4473 (17) C25'—H25D 0.9900
C1—N1—C8 108.58 (10) C25—C21—C20 107.91 (15)
C1—N1—C11 125.67 (10) C22—C21—C20 108.15 (13)
C8—N1—C11 124.84 (10) C25—C21—H21 110.5
C9—O3—C10 116.16 (9) C22—C21—H21 110.5
C2—C1—N1 110.67 (11) C20—C21—H21 110.5
C2—C1—H1 124.7 C21—C22—C23 108.31 (12)
N1—C1—H1 124.7 C21—C22—H22A 110.0
C1—C2—C3 105.81 (10) C23—C22—H22A 110.0
C1—C2—C18 129.80 (11) C21—C22—H22B 110.0
C3—C2—C18 124.28 (11) C23—C22—H22B 110.0
C4—C3—C8 118.63 (10) H22A—C22—H22B 108.4
C4—C3—C2 134.05 (11) N2—C23—C22 110.86 (12)
C8—C3—C2 107.24 (10) N2—C23—H23A 109.5
C5—C4—C3 119.14 (10) C22—C23—H23A 109.5
C5—C4—H4 120.4 N2—C23—H23B 109.5
C3—C4—H4 120.4 C22—C23—H23B 109.5
C4—C5—C6 121.22 (11) H23A—C23—H23B 108.1
C4—C5—H5 119.4 C19—N2—C23 107.06 (13)
C6—C5—H5 119.4 C19—N2—C24 109.12 (13)
C7—C6—C5 121.04 (10) C23—N2—C24 108.13 (12)
C7—C6—C9 117.76 (10) N2—C24—C25 112.14 (12)
C5—C6—C9 121.20 (10) N2—C24—H24A 109.2
C6—C7—C8 117.38 (10) C25—C24—H24A 109.2
C6—C7—H7 121.3 N2—C24—H24B 109.2
C8—C7—H7 121.3 C25—C24—H24B 109.2
N1—C8—C7 129.70 (10) H24A—C24—H24B 107.9
N1—C8—C3 107.67 (10) C21—C25—C24 107.59 (12)
C7—C8—C3 122.56 (11) C21—C25—H25A 110.2
O2—C9—O3 123.10 (11) C24—C25—H25A 110.2
O2—C9—C6 124.16 (11) C21—C25—H25B 110.2
O3—C9—C6 112.74 (9) C24—C25—H25B 110.2
O3—C10—H10A 109.5 H25A—C25—H25B 108.5
O3—C10—H10B 109.5 C18—C19'—N2' 123.0 (10)
H10A—C10—H10B 109.5 C18—C19'—C20' 123.3 (9)
O3—C10—H10C 109.5 N2'—C19'—C20' 112.0 (9)
H10A—C10—H10C 109.5 O1'—C20'—C21' 114.7 (13)
H10B—C10—H10C 109.5 O1'—C20'—C19' 108.5 (11)
N1—C11—C12 113.36 (10) C21'—C20'—C19' 107.0 (12)
N1—C11—H11A 108.9 O1'—C20'—H20' 108.8
C12—C11—H11A 108.9 C21'—C20'—H20' 108.8
N1—C11—H11B 108.9 C19'—C20'—H20' 108.8
C12—C11—H11B 108.9 C20'—O1'—H1' 109.5
H11A—C11—H11B 107.7 C20'—C21'—C22' 106.2 (13)
C17—C12—C13 118.55 (11) C20'—C21'—C25' 108.6 (14)
C17—C12—C11 121.83 (11) C22'—C21'—C25' 109.8 (14)
C13—C12—C11 119.62 (11) C20'—C21'—H21' 110.7
C14—C13—C12 120.72 (12) C22'—C21'—H21' 110.7
C14—C13—H13 119.6 C25'—C21'—H21' 110.7
C12—C13—H13 119.6 C23'—C22'—C21' 104.9 (12)
C15—C14—C13 120.31 (12) C23'—C22'—H22C 110.8
C15—C14—H14 119.8 C21'—C22'—H22C 110.8
C13—C14—H14 119.8 C23'—C22'—H22D 110.8
C16—C15—C14 119.39 (12) C21'—C22'—H22D 110.8
C16—C15—H15 120.3 H22C—C22'—H22D 108.8
C14—C15—H15 120.3 N2'—C23'—C22' 116.0 (12)
C15—C16—C17 120.38 (13) N2'—C23'—H23C 108.3
C15—C16—H16 119.8 C22'—C23'—H23C 108.3
C17—C16—H16 119.8 N2'—C23'—H23D 108.3
C12—C17—C16 120.65 (12) C22'—C23'—H23D 108.3
C12—C17—H17 119.7 H23C—C23'—H23D 107.4
C16—C17—H17 119.7 C24'—N2'—C23' 107.8 (12)
C19'—C18—C2 123.8 (5) C24'—N2'—C19' 104.4 (11)
C19—C18—C2 128.40 (12) C23'—N2'—C19' 105.6 (11)
C19'—C18—H18 115.1 N2'—C24'—C25' 113.8 (11)
C19—C18—H18 115.8 N2'—C24'—H24C 108.8
C2—C18—H18 115.8 C25'—C24'—H24C 108.8
C18—C19—N2 122.23 (12) N2'—C24'—H24D 108.8
C18—C19—C20 123.71 (12) C25'—C24'—H24D 108.8
N2—C19—C20 113.72 (11) H24C—C24'—H24D 107.7
O1—C20—C19 109.43 (11) C21'—C25'—C24' 106.2 (12)
O1—C20—C21 112.52 (13) C21'—C25'—H25C 110.5
C19—C20—C21 106.93 (11) C24'—C25'—H25C 110.5
O1—C20—H20 109.3 C21'—C25'—H25D 110.5
C19—C20—H20 109.3 C24'—C25'—H25D 110.5
C21—C20—H20 109.3 H25C—C25'—H25D 108.7
C25—C21—C22 109.07 (13)
C8—N1—C1—C2 −1.61 (13) C2—C18—C19—C20 −175.48 (13)
C11—N1—C1—C2 −171.05 (10) C18—C19—C20—O1 35.0 (2)
N1—C1—C2—C3 0.62 (13) N2—C19—C20—O1 −138.42 (14)
N1—C1—C2—C18 176.88 (11) C18—C19—C20—C21 157.16 (17)
C1—C2—C3—C4 177.33 (12) N2—C19—C20—C21 −16.29 (19)
C18—C2—C3—C4 0.8 (2) O1—C20—C21—C25 −171.58 (11)
C1—C2—C3—C8 0.56 (12) C19—C20—C21—C25 68.25 (16)
C18—C2—C3—C8 −175.96 (10) O1—C20—C21—C22 70.56 (15)
C8—C3—C4—C5 0.38 (16) C19—C20—C21—C22 −49.60 (17)
C2—C3—C4—C5 −176.11 (12) C25—C21—C22—C23 −51.32 (16)
C3—C4—C5—C6 0.94 (17) C20—C21—C22—C23 65.79 (16)
C4—C5—C6—C7 −1.10 (17) C21—C22—C23—N2 −13.47 (17)
C4—C5—C6—C9 178.01 (11) C18—C19—N2—C23 −104.06 (18)
C5—C6—C7—C8 −0.11 (16) C20—C19—N2—C23 69.50 (18)
C9—C6—C7—C8 −179.26 (10) C18—C19—N2—C24 139.14 (17)
C1—N1—C8—C7 −175.07 (12) C20—C19—N2—C24 −47.30 (18)
C11—N1—C8—C7 −5.52 (19) C22—C23—N2—C19 −50.65 (16)
C1—N1—C8—C3 1.92 (12) C22—C23—N2—C24 66.81 (15)
C11—N1—C8—C3 171.47 (10) C19—N2—C24—C25 64.01 (16)
C6—C7—C8—N1 178.07 (11) C23—N2—C24—C25 −52.12 (16)
C6—C7—C8—C3 1.47 (16) C22—C21—C25—C24 65.38 (16)
C4—C3—C8—N1 −178.88 (10) C20—C21—C25—C24 −51.89 (16)
C2—C3—C8—N1 −1.52 (12) N2—C24—C25—C21 −12.01 (18)
C4—C3—C8—C7 −1.63 (17) C19—C18—C19'—N2' −82.4 (17)
C2—C3—C8—C7 175.73 (10) C2—C18—C19'—N2' 27.3 (16)
C10—O3—C9—O2 −0.86 (16) C19—C18—C19'—C20' 81.5 (17)
C10—O3—C9—C6 178.94 (9) C2—C18—C19'—C20' −168.7 (10)
C7—C6—C9—O2 1.15 (17) C18—C19'—C20'—O1' −16.1 (19)
C5—C6—C9—O2 −177.99 (11) N2'—C19'—C20'—O1' 149.4 (13)
C7—C6—C9—O3 −178.65 (10) C18—C19'—C20'—C21' −140.4 (14)
C5—C6—C9—O3 2.21 (15) N2'—C19'—C20'—C21' 25.1 (17)
C1—N1—C11—C12 98.55 (13) O1'—C20'—C21'—C22' 165.5 (13)
C8—N1—C11—C12 −69.23 (14) C19'—C20'—C21'—C22' −74.1 (15)
N1—C11—C12—C17 −8.29 (16) O1'—C20'—C21'—C25' −76.4 (17)
N1—C11—C12—C13 171.63 (11) C19'—C20'—C21'—C25' 44.0 (16)
C17—C12—C13—C14 0.46 (19) C20'—C21'—C22'—C23' 48.1 (17)
C11—C12—C13—C14 −179.46 (12) C25'—C21'—C22'—C23' −69.2 (17)
C12—C13—C14—C15 −0.7 (2) C21'—C22'—C23'—N2' 21 (2)
C13—C14—C15—C16 0.3 (2) C22'—C23'—N2'—C24' 42.2 (18)
C14—C15—C16—C17 0.3 (2) C22'—C23'—N2'—C19' −68.9 (17)
C13—C12—C17—C16 0.21 (19) C18—C19'—N2'—C24' 92.0 (15)
C11—C12—C17—C16 −179.87 (12) C20'—C19'—N2'—C24' −73.5 (15)
C15—C16—C17—C12 −0.6 (2) C18—C19'—N2'—C23' −154.4 (13)
C1—C2—C18—C19' −32.0 (8) C20'—C19'—N2'—C23' 40.0 (15)
C3—C2—C18—C19' 143.6 (8) C23'—N2'—C24'—C25' −64.7 (16)
C1—C2—C18—C19 −5.1 (2) C19'—N2'—C24'—C25' 47.2 (16)
C3—C2—C18—C19 170.57 (14) C20'—C21'—C25'—C24' −67.2 (16)
C19'—C18—C19—N2 83.7 (14) C22'—C21'—C25'—C24' 48.5 (17)
C2—C18—C19—N2 −2.6 (2) N2'—C24'—C25'—C21' 18.4 (18)
C19'—C18—C19—C20 −89.2 (14)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1A···O2i 0.84 1.97 2.7989 (13) 169

Symmetry code: (i) x−1, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5242).

References

  1. Amudhan, V., Reddy, Y. T., Sonar, V. N., Venkatraj, M., Crooks, P. A., Michael, L., Freeman, M. L. & Sekhar, K. R. (2010). Bioorg. Med. Chem. Lett. 20, 7323–7326. [DOI] [PMC free article] [PubMed]
  2. Nonius (1998). COLLECT Nonius, BV, Delft, The Netherlands.
  3. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.
  4. Sekhar, K. R., Crooks, P. A., Sonar, V. N., Friedman, D. B., Chan, J. Y., Meredith, M. J., Stames, J. H., Kelton, K. R., Summar, S. R., Sasi, S. & Freeman, M. L. (2003). Cancer Res. 63, 5636–5645. [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Sonar, V. N., Parkin, S. & Crooks, P. A. (2004). Acta Cryst. C60, o659–o661. [DOI] [PubMed]
  7. Sonar, V. N., Reddy, Y. T., Sekhar, K. R., Sowmya, S., Freeman, M. L. & Crooks, P. A. (2007). Bioorg. Med. Chem. Lett. 17(24), 6821–6824. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812040731/hg5242sup1.cif

e-68-o3111-sup1.cif (28KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812040731/hg5242Isup2.hkl

e-68-o3111-Isup2.hkl (225.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES