Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Oct 13;68(Pt 11):o3119. doi: 10.1107/S1600536812041943

3-(6-Amino­pyridinium-3-yl)benzoate monohydrate

Zong-Yong Yuan a, Jun Zhao a,*, Zhao Peng a
PMCID: PMC3515224  PMID: 23284444

Abstract

The title compound, C12H10N2O2·H2O, crystallizes as a zwitterion in which the pyridine N atom is protonated and the carboxyl OH group is deprotonated. The benzene and pyridinium rings are inclined at a dihedral angle of 54.93 (1)°. In the crystal, O—H⋯O and N—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional supra­molecular network.

Related literature  

For the use of pyridine­carb­oxy­lic acid in coordination chemistry and for related structures, see: Tang et al. (2011); Zhong et al. (2008). graphic file with name e-68-o3119-scheme1.jpg

Experimental  

Crystal data  

  • C12H10N2O2·H2O

  • M r = 232.24

  • Monoclinic, Inline graphic

  • a = 7.1956 (18) Å

  • b = 13.091 (9) Å

  • c = 11.987 (10) Å

  • β = 101.44 (3)°

  • V = 1106.8 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.20 × 0.18 × 0.17 mm

Data collection  

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.980, T max = 0.983

  • 9294 measured reflections

  • 1942 independent reflections

  • 1344 reflections with I > 2σ(I)

  • R int = 0.095

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.084

  • wR(F 2) = 0.215

  • S = 1.09

  • 1942 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker,1999); data reduction: SAINT); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812041943/jj2152sup1.cif

e-68-o3119-sup1.cif (16.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812041943/jj2152Isup2.hkl

e-68-o3119-Isup2.hkl (95.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 1.87 2.715 (4) 167
N2—H2A⋯O2i 0.86 1.95 2.803 (4) 172
N2—H2B⋯O1W 0.86 2.19 2.915 (5) 142
O1W—H1WA⋯O2ii 0.86 2.00 2.761 (5) 147
O1W—H1WB⋯O1iii 0.87 2.16 2.928 (5) 146

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

supplementary crystallographic information

Comment

Multidentate bridging ligands containing functional groups such as the familiar pyridyl and/or carboxylate groups have proven to be among the most important types of organic ligands for the design and construction of coordination polymers exhibiting remarkable polymeric structural motifs due to their rich coordination modes (Tang et al., 2011; Zhong et al., 2008). We attempted to synthesize a ZnII complex with the ligand in hydrothermal synthesis conditions. However the title compound was obtained, its structure is reported here.

The asymmetric unit of the title compound, C12H10N2O2. H2O is composed of one 3-(6-Amino-pyridinium-3-yl)-benzoate acid molecule and one lattice water molecule. The dihedral angle between the mean planes of the benzene and pyridinium rings is 54.93 (1)°. The deprotonated carboxylate COO(O1—C1—O2) group is slightly twisted from the benzene ring by an angle of 11.61 (7)° between their mean planes (Fig. 1). Intermolecular O—H···O and N—H···O hydrogen-bonding interactions (Table 1) link adjacent molecules into a three-dimensional supramolecular network (Fig. 2).

Experimental

A mixture of 3-(6-Amino-pyridin-3-yl)-benzoic acid (0.0214 g, 0.1 mmol), Zn(CH3COO)2.2H2O (0.0219 g, 0.1 mmol) and water (8 ml) was stired vigorously for 30 min and then sealed in a Teflon-lined stainless-steel autoclave. The autoclave was heated and maintained at 393 K for 2 days, and then cooled to room temperature at 5 K h-1 to obtain colorless prism crystals suitable for X-ray analysis.

Refinement

The H atoms bonded to C and N atoms were positioned geometrically (C—H = 0.93 Å, N—H = 0.86 Å) and allowed to ride on their parent atoms, with Uiso(H) value equal to 1.2Ueq(C or N). The H atoms bonded to water O atoms were included in calculated positions and refined with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

The structure of the title compound with the atom-numbering scheme showing displacement ellipsoids at the 30% probability level for non-H atoms.

Fig. 2.

Fig. 2.

The three-dimensional supramolecular network formed by N—H···O and O—H···O hydrogen-bonding interactions. H atoms not involved in hydrogen bonding have been removed for clarity.

Crystal data

C12H10N2O2·H2O F(000) = 488
Mr = 232.24 Dx = 1.394 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1519 reflections
a = 7.1956 (18) Å θ = 3.1–25.0°
b = 13.091 (9) Å µ = 0.10 mm1
c = 11.987 (10) Å T = 296 K
β = 101.44 (3)° Prism, colourless
V = 1106.8 (12) Å3 0.20 × 0.18 × 0.17 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer 1942 independent reflections
Radiation source: fine-focus sealed tube 1344 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.095
φ and ω scans θmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −8→8
Tmin = 0.980, Tmax = 0.983 k = −15→15
9294 measured reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.084 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.215 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0884P)2 + 0.8024P] where P = (Fo2 + 2Fc2)/3
1942 reflections (Δ/σ)max < 0.001
154 parameters Δρmax = 0.30 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.6726 (5) 0.2413 (3) −0.2146 (3) 0.0454 (10)
C2 0.4946 (5) 0.1869 (3) −0.1993 (3) 0.0408 (9)
C3 0.4506 (5) 0.1783 (3) −0.0921 (3) 0.0418 (9)
H3A 0.5360 0.2026 −0.0291 0.050*
C4 0.2823 (5) 0.1342 (3) −0.0766 (3) 0.0422 (9)
C5 0.1555 (6) 0.0988 (3) −0.1711 (4) 0.0518 (11)
H5A 0.0407 0.0704 −0.1626 0.062*
C6 0.1995 (6) 0.1055 (3) −0.2783 (4) 0.0546 (11)
H6A 0.1146 0.0805 −0.3410 0.066*
C7 0.3682 (5) 0.1489 (3) −0.2930 (3) 0.0475 (10)
H7A 0.3969 0.1526 −0.3652 0.057*
C8 0.2383 (5) 0.1250 (3) 0.0394 (3) 0.0414 (9)
C9 0.0750 (5) 0.1644 (3) 0.0640 (3) 0.0461 (10)
H9A −0.0115 0.1964 0.0067 0.055*
C10 0.1542 (5) 0.1128 (3) 0.2573 (3) 0.0442 (10)
C11 0.3236 (5) 0.0713 (3) 0.2355 (3) 0.0482 (10)
H11A 0.4080 0.0389 0.2936 0.058*
C12 0.3642 (5) 0.0783 (3) 0.1300 (3) 0.0478 (10)
H12A 0.4779 0.0517 0.1172 0.057*
N1 0.0361 (4) 0.1579 (2) 0.1700 (3) 0.0454 (8)
H1A −0.0681 0.1837 0.1819 0.054*
N2 0.1056 (5) 0.1100 (3) 0.3583 (3) 0.0558 (10)
H2A 0.0003 0.1366 0.3671 0.067*
H2B 0.1795 0.0814 0.4149 0.067*
O1 0.7197 (4) 0.2360 (2) −0.3109 (2) 0.0626 (9)
O1W 0.2996 (5) −0.0676 (3) 0.4736 (3) 0.0984 (13)
H1WA 0.3198 −0.0995 0.5372 0.148*
H1WB 0.2433 −0.1120 0.4237 0.148*
O2 0.7649 (4) 0.2900 (2) −0.1316 (2) 0.0611 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.040 (2) 0.050 (2) 0.048 (2) 0.0020 (18) 0.0135 (18) 0.007 (2)
C2 0.0366 (19) 0.038 (2) 0.052 (2) 0.0037 (16) 0.0172 (17) 0.0019 (17)
C3 0.039 (2) 0.043 (2) 0.046 (2) 0.0025 (17) 0.0136 (17) −0.0019 (17)
C4 0.043 (2) 0.034 (2) 0.055 (2) −0.0038 (16) 0.0223 (18) −0.0001 (17)
C5 0.045 (2) 0.046 (2) 0.068 (3) −0.0120 (19) 0.019 (2) −0.007 (2)
C6 0.051 (3) 0.055 (3) 0.055 (3) −0.008 (2) 0.004 (2) −0.007 (2)
C7 0.047 (2) 0.045 (2) 0.053 (2) 0.0009 (19) 0.0162 (19) −0.0021 (19)
C8 0.043 (2) 0.0304 (19) 0.055 (2) 0.0031 (16) 0.0192 (18) 0.0039 (17)
C9 0.046 (2) 0.043 (2) 0.053 (2) −0.0009 (18) 0.0183 (19) 0.0058 (18)
C10 0.047 (2) 0.035 (2) 0.056 (2) −0.0028 (17) 0.0215 (19) 0.0021 (18)
C11 0.046 (2) 0.043 (2) 0.060 (3) 0.0058 (18) 0.0190 (19) 0.0039 (19)
C12 0.044 (2) 0.039 (2) 0.065 (3) 0.0067 (18) 0.023 (2) −0.0010 (19)
N1 0.0381 (17) 0.0437 (18) 0.060 (2) 0.0043 (15) 0.0242 (16) 0.0041 (16)
N2 0.053 (2) 0.062 (2) 0.058 (2) 0.0078 (17) 0.0229 (17) 0.0039 (17)
O1 0.0569 (18) 0.089 (2) 0.0477 (17) −0.0125 (16) 0.0258 (14) −0.0030 (15)
O1W 0.120 (3) 0.107 (3) 0.070 (2) 0.030 (3) 0.024 (2) 0.032 (2)
O2 0.0484 (16) 0.083 (2) 0.0543 (18) −0.0193 (16) 0.0175 (14) −0.0085 (16)

Geometric parameters (Å, º)

C1—O2 1.256 (4) C8—C12 1.408 (5)
C1—O1 1.267 (5) C9—N1 1.357 (5)
C1—C2 1.508 (5) C9—H9A 0.9300
C2—C3 1.387 (5) C10—N2 1.326 (5)
C2—C7 1.390 (5) C10—N1 1.346 (5)
C3—C4 1.387 (5) C10—C11 1.406 (5)
C3—H3A 0.9300 C11—C12 1.357 (5)
C4—C5 1.386 (5) C11—H11A 0.9300
C4—C8 1.491 (5) C12—H12A 0.9300
C5—C6 1.385 (5) N1—H1A 0.8600
C5—H5A 0.9300 N2—H2A 0.8600
C6—C7 1.383 (5) N2—H2B 0.8600
C6—H6A 0.9300 O1W—H1WA 0.8554
C7—H7A 0.9300 O1W—H1WB 0.8736
C8—C9 1.368 (5)
O2—C1—O1 123.7 (4) C9—C8—C4 121.4 (4)
O2—C1—C2 118.1 (3) C12—C8—C4 122.1 (3)
O1—C1—C2 118.2 (4) N1—C9—C8 121.6 (4)
C3—C2—C7 119.1 (3) N1—C9—H9A 119.2
C3—C2—C1 120.5 (3) C8—C9—H9A 119.2
C7—C2—C1 120.3 (3) N2—C10—N1 118.8 (3)
C4—C3—C2 121.5 (4) N2—C10—C11 123.6 (4)
C4—C3—H3A 119.2 N1—C10—C11 117.6 (3)
C2—C3—H3A 119.2 C12—C11—C10 120.1 (4)
C5—C4—C3 118.7 (4) C12—C11—H11A 120.0
C5—C4—C8 120.6 (3) C10—C11—H11A 120.0
C3—C4—C8 120.7 (4) C11—C12—C8 121.6 (4)
C6—C5—C4 120.2 (4) C11—C12—H12A 119.2
C6—C5—H5A 119.9 C8—C12—H12A 119.2
C4—C5—H5A 119.9 C10—N1—C9 122.7 (3)
C7—C6—C5 120.8 (4) C10—N1—H1A 118.7
C7—C6—H6A 119.6 C9—N1—H1A 118.7
C5—C6—H6A 119.6 C10—N2—H2A 120.0
C6—C7—C2 119.6 (4) C10—N2—H2B 120.0
C6—C7—H7A 120.2 H2A—N2—H2B 120.0
C2—C7—H7A 120.2 H1WA—O1W—H1WB 105.1
C9—C8—C12 116.5 (3)
O2—C1—C2—C3 −9.5 (5) C5—C4—C8—C9 −55.5 (5)
O1—C1—C2—C3 171.0 (4) C3—C4—C8—C9 124.6 (4)
O2—C1—C2—C7 167.5 (4) C5—C4—C8—C12 126.5 (4)
O1—C1—C2—C7 −11.9 (5) C3—C4—C8—C12 −53.5 (5)
C7—C2—C3—C4 −1.1 (5) C12—C8—C9—N1 −0.6 (6)
C1—C2—C3—C4 176.0 (3) C4—C8—C9—N1 −178.7 (3)
C2—C3—C4—C5 −0.4 (5) N2—C10—C11—C12 −179.2 (4)
C2—C3—C4—C8 179.6 (3) N1—C10—C11—C12 0.7 (6)
C3—C4—C5—C6 1.5 (6) C10—C11—C12—C8 −1.3 (6)
C8—C4—C5—C6 −178.5 (4) C9—C8—C12—C11 1.2 (6)
C4—C5—C6—C7 −1.1 (6) C4—C8—C12—C11 179.3 (4)
C5—C6—C7—C2 −0.5 (6) N2—C10—N1—C9 179.9 (4)
C3—C2—C7—C6 1.5 (5) C11—C10—N1—C9 −0.1 (5)
C1—C2—C7—C6 −175.6 (3) C8—C9—N1—C10 0.0 (6)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O1i 0.86 1.87 2.715 (4) 167
N2—H2A···O2i 0.86 1.95 2.803 (4) 172
N2—H2B···O1W 0.86 2.19 2.915 (5) 142
O1W—H1WA···O2ii 0.86 2.00 2.761 (5) 147
O1W—H1WB···O1iii 0.87 2.16 2.928 (5) 146

Symmetry codes: (i) x−1, −y+1/2, z+1/2; (ii) −x+1, y−1/2, −z+1/2; (iii) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2152).

References

  1. Bruker (1999). SMART and SAINT Bruker AXS Inc., Wisconsin, USA.
  2. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Tang, L., Fu, F., Wu, Y. P., Hou, X. Y. & Gao, L. J. (2011). J. Coord. Chem. 64, 3146–3157.
  5. Zhong, R. Q., Zou, R. Q., Du, M., Jiang, L., Yamada, T., Maruta, G., Takeda, S. & Xu, Q. (2008). CrystEngComm, 10, 605–613.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812041943/jj2152sup1.cif

e-68-o3119-sup1.cif (16.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812041943/jj2152Isup2.hkl

e-68-o3119-Isup2.hkl (95.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES