Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Oct 13;68(Pt 11):o3125. doi: 10.1107/S1600536812041888

(2-(Benzo[d]thia­zol-2yl-meth­oxy)-5-chloro­phen­yl)(phen­yl)methanone

K N Venugopala a,*, Susanta K Nayak b,*, Thavendran Govender a, Hendrik G Kruger c, Glenn E M Maguire c
PMCID: PMC3515230  PMID: 23284450

Abstract

In the title compound, C21H14ClNO2S, the dihedral angle between the benzothia­zole and diphenyl methanone groups is 68.6 (2)°. The crystal structure consists of dimeric units generated by C—H⋯N bonds, further linked by C—H⋯O bonds and C—H⋯π and π–π inter­actions [centroid–centroiddistance = 3.856 (2) Å], which lead to a criss-cross assembly parallel to (001).

Related literature  

For background to the applications of benzothia­zole derivatives, see: Rana et al. (2007); Telvekar et al. (2012); Saeed et al. (2010).graphic file with name e-68-o3125-scheme1.jpg

Experimental  

Crystal data  

  • C21H14ClNO2S

  • M r = 379.84

  • Orthorhombic, Inline graphic

  • a = 7.4598 (3) Å

  • b = 19.3131 (8) Å

  • c = 24.4002 (9) Å

  • V = 3515.4 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 173 K

  • 0.22 × 0.16 × 0.03 mm

Data collection  

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008) T min = 0.927, T max = 0.990

  • 52834 measured reflections

  • 3206 independent reflections

  • 2576 reflections with I > 2σ(I)

  • R int = 0.063

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.200

  • S = 1.30

  • 3206 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812041888/bg2479sup1.cif

e-68-o3125-sup1.cif (19.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812041888/bg2479Isup2.hkl

e-68-o3125-Isup2.hkl (157.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812041888/bg2479Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the S1/C1/C6/N1/C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯N1i 0.95 2.56 3.432 (5) 153
C5—H5⋯O2ii 0.95 2.59 3.478 (5) 155
C18—H18⋯Cg1iii 0.95 2.62 3.433 (5) 144

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors wish to thank the University of KwaZulu-Natal, South Africa, for facilities and Dr Hong Su, Department of Chemistry, University of Cape Town, for the data collection.

supplementary crystallographic information

Comment

Our interest in the molecular design of the benzothiazole moiety is due to its diverse chemical and biological activities. Benzothiazole derivatives exhibit biological activities as antitumor, antiinflammatory, analgesic, antimicrobial, and potential anti HIV agents etc. Still the variety of biological features of new benzothiazole derivatives are of great scientific interest Rana et al. (2007); Telvekar et al. (2012); Saeed et al. (2010). Here, we report the single-crystal structure of the title compound, C21H14ClNO2S.

The molecule adopts a conformation with a 68.6 (2)° dihedral angle between the planes of the benzothiazole and diphenyl methanone groups (Fig. 1). The weak C—H···N hydrogen bonds (Table 1, 1st entry) form dimeric units (Fig. 2a), in turn linked by the C—H···O ones (Table 1, 2nd entry) into planar arrays parallel to (001). This 2D structure is reinforced by a C-H···π bond involving the five-membered ring S1/C1/C6/N1/C7 (centroid Cg1) (Table 1, third entry) and a π···π bond between the C10—C14 six-membered ring (centroid Cg2) and the C16—C21 six-membered ring (centroid Cg3), viz., Cg2···Cg3i, (i): 1/2 + x, 1/2 - y, -z, with an intercentroid distance of 3.856 (2) Å, all these interactions leading to the criss-cross assembly depicted in Fig 2b.

Experimental

To a solution of 2-(chloromethyl)-benzo-thiazole (0.5 g, 0.0027 mol) and (5-chloro-2-hydroxyphenyl)(phenyl)methanone (0.0027 mol) in dry THF, dry potassium carbonate (0.38 g, 0.0027 mol) was added and stirred at room temperature. The reaction mixture was concentrated to remove the solvent, diluted with ethyl acetate, washed with water, brine solution and dried over anhydrous sodium sulfate. The organic layer was concentrated to yield a residue which was purified by column chromatography using ethyl acetate and n-hexane as eluent (7:3, Rf = 0.68) to afford as a white solid product (Yield 70.8%; m. p. 403 (2) K).Suitable crystals for single-crystal X-ray study were obtained by slow evaporation crystallization from ethanol solvent at room temperature.

Refinement

All H atoms were positioned geometrically and refined using a riding model with Uiso(H)= 1.2 Ueq(C). The space group might be considered as Pbca only on average, since there are many violations of the a glide condition. This may be the reason for some Fo-Fc discrepancies. Refinement in lower symmetry groups, however, did not improve the results.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing the atom labelling scheme with displacement ellipsoids for non-H atoms at 50% probability level.

Fig. 2.

Fig. 2.

Packing views of the title compound. (a) Showing in detail the formation of dimers (C—H···N bonds) and their interaction (C—H···O bonds. (b). The criss-cross molecular assembly perpendicular to the c axis.

Crystal data

C21H14ClNO2S Dx = 1.435 Mg m3
Mr = 379.84 Melting point: 403(2) K
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 560 reflections
a = 7.4598 (3) Å θ = 1.7–25.3°
b = 19.3131 (8) Å µ = 0.35 mm1
c = 24.4002 (9) Å T = 173 K
V = 3515.4 (2) Å3 Plate, colourless
Z = 8 0.22 × 0.16 × 0.03 mm
F(000) = 1568

Data collection

Nonius KappaCCD diffractometer 3206 independent reflections
Radiation source: fine-focus sealed tube 2576 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.063
1.2° φ scans and ω scans θmax = 25.3°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) h = −8→8
Tmin = 0.927, Tmax = 0.990 k = −23→23
52834 measured reflections l = −29→29

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.200 H-atom parameters constrained
S = 1.30 w = 1/[σ2(Fo2) + (0.071P)2 + 8.1626P] where P = (Fo2 + 2Fc2)/3
3206 reflections (Δ/σ)max < 0.001
235 parameters Δρmax = 0.66 e Å3
0 restraints Δρmin = −0.33 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.34601 (15) 0.06802 (6) 0.39552 (4) 0.0309 (3)
Cl1 0.68528 (18) 0.27003 (7) 0.68940 (5) 0.0470 (4)
O1 0.4110 (4) 0.11200 (15) 0.50149 (11) 0.0315 (7)
N1 0.1614 (5) −0.02826 (17) 0.44408 (14) 0.0273 (8)
C6 0.1481 (5) −0.0405 (2) 0.38812 (17) 0.0270 (9)
C7 0.2577 (5) 0.0259 (2) 0.45299 (16) 0.0256 (9)
C8 0.2953 (6) 0.0542 (2) 0.50881 (16) 0.0276 (9)
H8A 0.1825 0.0688 0.5268 0.033*
H8B 0.3537 0.0187 0.5319 0.033*
O2 0.5685 (4) 0.29934 (15) 0.47346 (12) 0.0373 (8)
C14 0.5686 (5) 0.2081 (2) 0.53676 (16) 0.0245 (9)
C15 0.5962 (5) 0.2376 (2) 0.48050 (17) 0.0258 (9)
C16 0.6632 (5) 0.1936 (2) 0.43523 (16) 0.0240 (9)
C17 0.7650 (5) 0.1344 (2) 0.44537 (16) 0.0266 (9)
H17 0.7872 0.1203 0.4820 0.032*
C13 0.6296 (5) 0.2462 (2) 0.58122 (17) 0.0286 (9)
H13 0.6917 0.2885 0.5753 0.034*
C9 0.4719 (5) 0.1466 (2) 0.54683 (16) 0.0252 (9)
C19 0.8018 (7) 0.1161 (3) 0.34894 (19) 0.0400 (11)
H19 0.8501 0.0899 0.3195 0.048*
C10 0.4403 (6) 0.1248 (2) 0.60021 (17) 0.0305 (9)
H10 0.3735 0.0837 0.6068 0.037*
C18 0.8338 (6) 0.0963 (2) 0.40225 (19) 0.0340 (10)
H18 0.9036 0.0562 0.4095 0.041*
C11 0.5061 (6) 0.1629 (2) 0.64375 (17) 0.0336 (10)
H11 0.4862 0.1477 0.6803 0.040*
C1 0.2398 (6) 0.0070 (2) 0.35491 (17) 0.0286 (9)
C12 0.6004 (6) 0.2229 (2) 0.63404 (17) 0.0301 (10)
C20 0.6980 (7) 0.1747 (3) 0.33833 (18) 0.0409 (12)
H20 0.6730 0.1878 0.3016 0.049*
C5 0.0510 (6) −0.0945 (2) 0.36427 (19) 0.0347 (10)
H5 −0.0113 −0.1271 0.3863 0.042*
C4 0.0477 (7) −0.0993 (2) 0.30759 (19) 0.0407 (11)
H4 −0.0177 −0.1357 0.2907 0.049*
C21 0.6322 (6) 0.2134 (2) 0.38092 (18) 0.0340 (10)
H21 0.5647 0.2540 0.3735 0.041*
C2 0.2347 (7) 0.0017 (3) 0.29783 (19) 0.0400 (11)
H2 0.2961 0.0341 0.2754 0.048*
C3 0.1385 (7) −0.0517 (3) 0.2751 (2) 0.0442 (12)
H3 0.1340 −0.0562 0.2364 0.053*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0343 (6) 0.0302 (6) 0.0282 (6) −0.0080 (5) 0.0014 (4) 0.0005 (4)
Cl1 0.0576 (8) 0.0537 (8) 0.0296 (6) −0.0104 (6) −0.0051 (5) −0.0114 (5)
O1 0.0351 (17) 0.0341 (16) 0.0253 (14) −0.0140 (14) 0.0015 (12) −0.0025 (12)
N1 0.0278 (19) 0.0235 (18) 0.0308 (18) 0.0005 (15) −0.0023 (15) 0.0018 (15)
C6 0.023 (2) 0.026 (2) 0.032 (2) 0.0039 (17) −0.0003 (17) −0.0032 (17)
C7 0.021 (2) 0.025 (2) 0.031 (2) 0.0018 (17) 0.0013 (17) 0.0008 (17)
C8 0.028 (2) 0.026 (2) 0.029 (2) −0.0050 (18) 0.0022 (17) 0.0020 (17)
O2 0.051 (2) 0.0240 (16) 0.0366 (17) 0.0032 (14) 0.0062 (15) 0.0024 (13)
C14 0.023 (2) 0.024 (2) 0.027 (2) 0.0019 (17) 0.0009 (17) −0.0010 (16)
C15 0.022 (2) 0.025 (2) 0.030 (2) −0.0031 (17) −0.0016 (17) 0.0019 (17)
C16 0.023 (2) 0.023 (2) 0.026 (2) −0.0022 (17) 0.0002 (16) 0.0027 (17)
C17 0.024 (2) 0.028 (2) 0.027 (2) −0.0004 (18) −0.0004 (17) 0.0006 (17)
C13 0.026 (2) 0.028 (2) 0.032 (2) −0.0024 (18) 0.0015 (18) −0.0033 (17)
C9 0.023 (2) 0.028 (2) 0.025 (2) 0.0003 (17) −0.0020 (16) −0.0040 (16)
C19 0.044 (3) 0.043 (3) 0.033 (2) −0.005 (2) 0.011 (2) −0.011 (2)
C10 0.030 (2) 0.031 (2) 0.030 (2) −0.0041 (19) 0.0025 (18) 0.0026 (18)
C18 0.026 (2) 0.032 (2) 0.044 (3) 0.0014 (18) 0.0013 (19) −0.007 (2)
C11 0.036 (2) 0.041 (3) 0.024 (2) 0.001 (2) 0.0025 (18) 0.0024 (19)
C1 0.025 (2) 0.031 (2) 0.030 (2) 0.0018 (18) −0.0015 (18) −0.0024 (18)
C12 0.029 (2) 0.035 (2) 0.026 (2) 0.0031 (19) −0.0021 (17) −0.0066 (18)
C20 0.056 (3) 0.044 (3) 0.023 (2) −0.005 (2) 0.000 (2) 0.004 (2)
C5 0.033 (2) 0.028 (2) 0.043 (3) −0.001 (2) −0.002 (2) −0.005 (2)
C4 0.044 (3) 0.038 (3) 0.040 (3) −0.004 (2) −0.008 (2) −0.014 (2)
C21 0.043 (3) 0.029 (2) 0.030 (2) −0.002 (2) −0.004 (2) 0.0076 (18)
C2 0.046 (3) 0.043 (3) 0.030 (2) −0.006 (2) 0.003 (2) −0.001 (2)
C3 0.049 (3) 0.053 (3) 0.031 (2) −0.004 (2) −0.002 (2) −0.008 (2)

Geometric parameters (Å, º)

S1—C1 1.731 (4) C13—H13 0.9500
S1—C7 1.750 (4) C9—C10 1.389 (6)
Cl1—C12 1.747 (4) C19—C18 1.377 (7)
O1—C9 1.370 (5) C19—C20 1.396 (7)
O1—C8 1.422 (5) C19—H19 0.9500
N1—C7 1.288 (5) C10—C11 1.383 (6)
N1—C6 1.389 (5) C10—H10 0.9500
C6—C5 1.397 (6) C18—H18 0.9500
C6—C1 1.402 (6) C11—C12 1.377 (6)
C7—C8 1.494 (6) C11—H11 0.9500
C8—H8A 0.9900 C1—C2 1.397 (6)
C8—H8B 0.9900 C20—C21 1.371 (6)
O2—C15 1.223 (5) C20—H20 0.9500
C14—C13 1.388 (6) C5—C4 1.386 (6)
C14—C9 1.411 (6) C5—H5 0.9500
C14—C15 1.500 (6) C4—C3 1.390 (7)
C15—C16 1.480 (6) C4—H4 0.9500
C16—C17 1.394 (6) C21—H21 0.9500
C16—C21 1.399 (6) C2—C3 1.372 (7)
C17—C18 1.383 (6) C2—H2 0.9500
C17—H17 0.9500 C3—H3 0.9500
C13—C12 1.382 (6)
C1—S1—C7 88.3 (2) C20—C19—H19 120.1
C9—O1—C8 118.8 (3) C11—C10—C9 119.9 (4)
C7—N1—C6 110.1 (3) C11—C10—H10 120.0
N1—C6—C5 125.0 (4) C9—C10—H10 120.0
N1—C6—C1 115.0 (4) C19—C18—C17 120.5 (4)
C5—C6—C1 120.0 (4) C19—C18—H18 119.8
N1—C7—C8 123.8 (4) C17—C18—H18 119.8
N1—C7—S1 116.9 (3) C12—C11—C10 119.9 (4)
C8—C7—S1 119.3 (3) C12—C11—H11 120.1
O1—C8—C7 106.6 (3) C10—C11—H11 120.1
O1—C8—H8A 110.4 C2—C1—C6 121.0 (4)
C7—C8—H8A 110.4 C2—C1—S1 129.3 (4)
O1—C8—H8B 110.4 C6—C1—S1 109.7 (3)
C7—C8—H8B 110.4 C11—C12—C13 121.0 (4)
H8A—C8—H8B 108.6 C11—C12—Cl1 119.4 (3)
C13—C14—C9 118.6 (4) C13—C12—Cl1 119.6 (3)
C13—C14—C15 118.0 (4) C21—C20—C19 120.0 (4)
C9—C14—C15 123.3 (4) C21—C20—H20 120.0
O2—C15—C16 120.8 (4) C19—C20—H20 120.0
O2—C15—C14 118.4 (4) C4—C5—C6 118.3 (4)
C16—C15—C14 120.7 (3) C4—C5—H5 120.8
C17—C16—C21 118.8 (4) C6—C5—H5 120.8
C17—C16—C15 121.5 (4) C5—C4—C3 121.1 (4)
C21—C16—C15 119.6 (4) C5—C4—H4 119.5
C18—C17—C16 120.2 (4) C3—C4—H4 119.5
C18—C17—H17 119.9 C20—C21—C16 120.7 (4)
C16—C17—H17 119.9 C20—C21—H21 119.7
C12—C13—C14 120.3 (4) C16—C21—H21 119.7
C12—C13—H13 119.8 C3—C2—C1 118.2 (4)
C14—C13—H13 119.8 C3—C2—H2 120.9
O1—C9—C10 123.6 (4) C1—C2—H2 120.9
O1—C9—C14 116.1 (3) C2—C3—C4 121.4 (4)
C10—C9—C14 120.4 (4) C2—C3—H3 119.3
C18—C19—C20 119.8 (4) C4—C3—H3 119.3
C18—C19—H19 120.1
C7—N1—C6—C5 −178.9 (4) O1—C9—C10—C11 −179.8 (4)
C7—N1—C6—C1 0.2 (5) C14—C9—C10—C11 −1.0 (6)
C6—N1—C7—C8 178.7 (4) C20—C19—C18—C17 −0.5 (7)
C6—N1—C7—S1 −0.7 (5) C16—C17—C18—C19 −0.4 (6)
C1—S1—C7—N1 0.8 (3) C9—C10—C11—C12 1.0 (7)
C1—S1—C7—C8 −178.6 (3) N1—C6—C1—C2 −178.7 (4)
C9—O1—C8—C7 −177.9 (3) C5—C6—C1—C2 0.5 (7)
N1—C7—C8—O1 177.7 (4) N1—C6—C1—S1 0.4 (5)
S1—C7—C8—O1 −2.9 (5) C5—C6—C1—S1 179.6 (3)
C13—C14—C15—O2 −42.2 (5) C7—S1—C1—C2 178.3 (5)
C9—C14—C15—O2 132.7 (4) C7—S1—C1—C6 −0.6 (3)
C13—C14—C15—C16 135.0 (4) C10—C11—C12—C13 0.5 (7)
C9—C14—C15—C16 −50.1 (6) C10—C11—C12—Cl1 −179.2 (3)
O2—C15—C16—C17 152.4 (4) C14—C13—C12—C11 −2.0 (6)
C14—C15—C16—C17 −24.8 (6) C14—C13—C12—Cl1 177.7 (3)
O2—C15—C16—C21 −24.3 (6) C18—C19—C20—C21 1.6 (7)
C14—C15—C16—C21 158.5 (4) N1—C6—C5—C4 178.8 (4)
C21—C16—C17—C18 0.1 (6) C1—C6—C5—C4 −0.3 (6)
C15—C16—C17—C18 −176.6 (4) C6—C5—C4—C3 0.0 (7)
C9—C14—C13—C12 2.0 (6) C19—C20—C21—C16 −1.9 (7)
C15—C14—C13—C12 177.1 (4) C17—C16—C21—C20 1.1 (7)
C8—O1—C9—C10 6.1 (6) C15—C16—C21—C20 177.8 (4)
C8—O1—C9—C14 −172.8 (3) C6—C1—C2—C3 −0.5 (7)
C13—C14—C9—O1 178.4 (3) S1—C1—C2—C3 −179.3 (4)
C15—C14—C9—O1 3.6 (6) C1—C2—C3—C4 0.2 (8)
C13—C14—C9—C10 −0.5 (6) C5—C4—C3—C2 0.0 (8)
C15—C14—C9—C10 −175.3 (4)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the S1/C1/C6/N1/C7 ring.

D—H···A D—H H···A D···A D—H···A
C17—H17···N1i 0.95 2.56 3.432 (5) 153
C5—H5···O2ii 0.95 2.59 3.478 (5) 155
C18—H18···Cg1iii 0.95 2.62 3.433 (5) 144

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1/2, y−1/2, z; (iii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2479).

References

  1. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  2. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  3. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
  4. Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
  5. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  6. Rana, A., Siddiqui, N. & Khan, S. A. (2007). J. Pharm. Sci. 69, 10–17.
  7. Saeed, S., Rashid, N., Jones, P. G., Ali, M. & Hussain, R. (2010). Eur. J. Med. Chem. 45, 1323–1331. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Telvekar, V. N., Bairwa, V. K., Satardekar, K. & Bellubi, A. (2012). Bioorg. Med. Chem. Lett. 22, 148–155. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812041888/bg2479sup1.cif

e-68-o3125-sup1.cif (19.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812041888/bg2479Isup2.hkl

e-68-o3125-Isup2.hkl (157.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812041888/bg2479Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES