Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Oct 13;68(Pt 11):o3136. doi: 10.1107/S1600536812042432

7-[(3-Chloro-6-methyl-6,11-dihydro­dibenzo[c,f][1,2]thia­zepin-11-yl)amino]­hepta­noic acid S,S-dioxide hydro­chloride

Anatoly Mishnev a, Alvis Zvirgzdins b,*, Andris Actins b, Mara Delina b
PMCID: PMC3515238  PMID: 23284458

Abstract

In the title compound, C21H26ClN2O4S.Cl, also known as tianeptine hydro­chloride, the seven-membered ring adopts a boat conformation. The dihedral angle between the mean planes of the benzene rings is 44.44 (7)°. There is an intra­molecular hydrogen bond formed via S= O⋯H—N. In the crystal, mol­ecules are connected via pairs of N—H.·O, N—H⋯Cl and O—H⋯Cl hydrogen bonds, forming inversion dimers, which are consolidated by C—H⋯O inter­actions. The dimers are linked by C—H⋯O and C—H⋯Cl inter­actions, forming a two-dimensional network lying parallel to (011).

Related literature  

For general information about tianeptine and its preparation, see: Guzman et al. (2010). For related structures, see: Orola et al. (2012).graphic file with name e-68-o3136-scheme1.jpg

Experimental  

Crystal data  

  • C21H26ClN2O4S+·Cl

  • M r = 473.40

  • Triclinic, Inline graphic

  • a = 9.5439 (2) Å

  • b = 10.0910 (2) Å

  • c = 13.1802 (3) Å

  • α = 104.000 (1)°

  • β = 101.538 (1)°

  • γ = 105.018 (1)°

  • V = 1139.04 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 190 K

  • 0.24 × 0.20 × 0.14 mm

Data collection  

  • Nonius KappaCCD diffractometer

  • 7552 measured reflections

  • 4985 independent reflections

  • 4015 reflections with I > 2σ(I)

  • R int = 0.021

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.100

  • S = 1.03

  • 4985 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.76 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: COLLECT (Hooft, 1998); cell refinement: HKL DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global. DOI: 10.1107/S1600536812042432/pv2586sup1.cif

e-68-o3136-sup1.cif (23.1KB, cif)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H3A⋯Cl2i 0.90 2.31 3.154 (2) 157
N2—H3B⋯O3ii 0.90 2.32 2.821 (2) 115
C16—H11B⋯O3ii 0.97 2.56 3.201 (2) 124
O4—H6⋯Cl2iii 0.82 2.22 3.043 (2) 176
C4—H3⋯Cl2iv 0.93 2.82 3.651 (2) 150
C18—H6A⋯O4v 0.97 2.56 3.467 (2) 157
C7—H7⋯Cl2 0.98 2.59 3.534 (2) 162
N2—H3B⋯O2 0.90 2.02 2.802 (2) 144

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

This work was supported by the European Regional Development Fund (No. 2011/0014/2DP/2.1.1.1.0/10/APIA/VIAA/092).

supplementary crystallographic information

Comment

Tianeptine salts are of wide interest since they are crystalline. Although the synthesis of the title compound, tianeptine hydrochloride, has been described (Guzman et al., 2010) we describe in this article an improved method of its synthesis and its crystal structure.

In the title compound (Fig. 1), the seven-membered ring adopts a boat conformation with the values of torsion angles: C1—S1—N1—C13 = -78.4 (2) and C1—C6—C7—C8 = -56.3 (3)°. The dihedral angle between the mean planes of the two benzene rings (C1–C6 and C8–C13) is 44.44 (7)°. There is an intramolecular hydrogen bond in the title molecule which is formed via S1═O2···H3B—N2 that stabilizes the molecular structure. In the crystal, the molecules are connected via hydrogen bonds between carboxyl and amine groups and chloride anion, O4—H6···Cl2, N2—H3A···Cl2 and N2—H3B···O3. The crystal structure is further consolidated by intermolecular interactions, C18—H6A···O4, C4—H3···Cl2, C16—H11B···O3 and C7—H7···Cl2 (Table 1 and Fig. 2). The supramolecular structure of tianeptine hydrochloride consists of parallel oriented tricyclic fragment and parallel oriented carbon atom chains (heptanoic acid). Carbon atom chains are linked with hydrogen bonds via chloride anion, amine and carboxylgroup. The torsion angle C8—C7—N2—C15 is -168.4 (2)° so that the carbon atom chain C15—C20 is almost parallel to the benzene ring C8—C13.

The crystal structures of tianeptine polymorphs have been reported recently (Orola et al., 2012). The title structure is more similar with polymorph A structure in which tianeptine molecules are linked via hydrogen bonds between amine and carboxyl groups. The tianeptine molecules in the structure of tianeptine polymorph B are in a zwiterrion form.

Experimental

Tianeptine sodium salt (0.5 g;1.09 mmol) was dissolved in 20 ml deionized water in a Erlenmeyer flask and added ~3 mmol of hydrochloric acid. Mixture were stirred for 6 h. After 6 h suspension was filtered and washed with cold water. The product was dried and recrystallized from water by slow evaporation at room temperature.

Refinement

All hydrogen atoms were positioned geometrically with C—H distances ranging from 0.93 to 0.97 Å and refined as riding on their parent atoms with Uiso(H) = 1.5 Ueq(C) for methyl groups and Uiso(H) = 1.2 Ueq(C) for others.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing 50% probability ellipsoids and hydrogen atoms are shown as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Packing diagram of the title compound viewed along the c axis. Blue lines indicate hydrogen bonds.

Crystal data

C21H26ClN2O4S+·Cl Z = 2
Mr = 473.40 F(000) = 496
Triclinic, P1 Dx = 1.380 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.5439 (2) Å Cell parameters from 6759 reflections
b = 10.0910 (2) Å θ = 1.0–27.1°
c = 13.1802 (3) Å µ = 0.41 mm1
α = 104.4000 (12)° T = 190 K
β = 101.538 (1)° Plate, colourless
γ = 105.0180 (11)° 0.24 × 0.20 × 0.14 mm
V = 1139.04 (4) Å3

Data collection

Nonius KappaCCD diffractometer 4015 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.021
Graphite monochromator θmax = 27.1°, θmin = 3.1°
CCD scans h = −11→12
7552 measured reflections k = −12→12
4985 independent reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0363P)2 + 0.641P] where P = (Fo2 + 2Fc2)/3
4985 reflections (Δ/σ)max = 0.018
273 parameters Δρmax = 0.76 e Å3
0 restraints Δρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.48761 (6) 0.92769 (6) 0.32682 (5) 0.03721 (15)
S1 1.08561 (5) 1.04778 (5) 0.36222 (4) 0.02568 (12)
Cl2 0.77093 (5) 0.48993 (5) −0.09234 (4) 0.03147 (13)
O2 1.17517 (14) 0.95570 (14) 0.37600 (11) 0.0274 (3)
N2 1.04759 (17) 0.69630 (16) 0.20172 (13) 0.0218 (3)
H3A 1.1139 0.6682 0.1689 0.026*
H3B 1.0994 0.7516 0.2708 0.026*
O4 0.57739 (17) 0.42297 (18) 0.67606 (12) 0.0375 (4)
H6 0.6331 0.4443 0.7378 0.056*
O1 1.08744 (17) 1.15746 (16) 0.45495 (12) 0.0371 (4)
O3 0.76590 (16) 0.35639 (18) 0.62834 (12) 0.0382 (4)
N1 1.13800 (18) 1.12491 (17) 0.27471 (14) 0.0281 (4)
C5 0.7141 (2) 0.7622 (2) 0.13441 (16) 0.0264 (4)
H2 0.6903 0.6926 0.0667 0.032*
C4 0.5978 (2) 0.7900 (2) 0.17507 (17) 0.0288 (4)
H3 0.4974 0.7398 0.1352 0.035*
C6 0.8655 (2) 0.83537 (19) 0.19193 (15) 0.0212 (4)
C2 0.7818 (2) 0.9710 (2) 0.33545 (16) 0.0265 (4)
H5 0.8047 1.0416 0.4025 0.032*
C18 0.7174 (2) 0.4501 (2) 0.40383 (16) 0.0266 (4)
H6A 0.6521 0.5092 0.4011 0.032*
H6B 0.7988 0.4970 0.4713 0.032*
C7 0.9826 (2) 0.7887 (2) 0.14329 (15) 0.0216 (4)
H7 0.9253 0.7226 0.0698 0.026*
C3 0.6328 (2) 0.8933 (2) 0.27553 (17) 0.0272 (4)
C21 0.6408 (2) 0.3647 (2) 0.60345 (16) 0.0261 (4)
C20 0.5396 (2) 0.3075 (2) 0.48869 (16) 0.0282 (4)
H10A 0.4775 0.3685 0.4796 0.034*
H10B 0.4726 0.2109 0.4761 0.034*
C16 0.8769 (2) 0.5855 (2) 0.30509 (16) 0.0268 (4)
H11A 0.8158 0.6486 0.3035 0.032*
H11B 0.9622 0.6312 0.3702 0.032*
C1 0.8963 (2) 0.9404 (2) 0.29264 (15) 0.0228 (4)
C15 0.9334 (2) 0.5636 (2) 0.20475 (16) 0.0249 (4)
H13A 0.9785 0.4873 0.2007 0.030*
H13B 0.8475 0.5310 0.1405 0.030*
C13 1.1778 (2) 1.0475 (2) 0.18368 (16) 0.0273 (4)
C19 0.6274 (2) 0.3021 (2) 0.40408 (16) 0.0291 (4)
H15A 0.6963 0.2486 0.4177 0.035*
H15B 0.5570 0.2497 0.3322 0.035*
C8 1.1112 (2) 0.8998 (2) 0.12618 (15) 0.0244 (4)
C17 0.7835 (3) 0.4409 (2) 0.30818 (18) 0.0338 (5)
H17A 0.7014 0.3949 0.2411 0.041*
H17B 0.8465 0.3796 0.3104 0.041*
C9 1.1641 (2) 0.8421 (3) 0.03912 (17) 0.0338 (5)
H18 1.1217 0.7438 0.0004 0.041*
C14 1.0767 (3) 1.2418 (2) 0.2609 (2) 0.0444 (6)
H19A 1.1297 1.2932 0.2203 0.067*
H19B 1.0895 1.3074 0.3313 0.067*
H19C 0.9710 1.2007 0.2221 0.067*
C12 1.2910 (2) 1.1316 (3) 0.1514 (2) 0.0381 (5)
H20 1.3341 1.2301 0.1891 0.046*
C10 1.2774 (3) 0.9263 (3) 0.0089 (2) 0.0437 (6)
H21 1.3110 0.8851 −0.0489 0.052*
C11 1.3399 (3) 1.0725 (3) 0.0656 (2) 0.0437 (6)
H22 1.4151 1.1306 0.0455 0.052*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0319 (3) 0.0313 (3) 0.0597 (4) 0.0146 (2) 0.0278 (3) 0.0173 (3)
S1 0.0248 (2) 0.0244 (2) 0.0245 (2) 0.00797 (19) 0.00501 (19) 0.0035 (2)
Cl2 0.0313 (3) 0.0342 (3) 0.0234 (2) 0.0100 (2) 0.0077 (2) 0.0005 (2)
O2 0.0264 (7) 0.0312 (7) 0.0254 (7) 0.0130 (6) 0.0048 (6) 0.0086 (6)
N2 0.0221 (8) 0.0241 (8) 0.0221 (8) 0.0099 (6) 0.0091 (6) 0.0075 (7)
O4 0.0396 (9) 0.0494 (9) 0.0282 (8) 0.0243 (8) 0.0087 (7) 0.0107 (7)
O1 0.0359 (8) 0.0334 (8) 0.0324 (8) 0.0106 (7) 0.0060 (6) −0.0025 (7)
O3 0.0293 (8) 0.0611 (10) 0.0343 (8) 0.0210 (7) 0.0112 (6) 0.0242 (8)
N1 0.0265 (8) 0.0238 (8) 0.0337 (9) 0.0080 (7) 0.0070 (7) 0.0102 (7)
C5 0.0272 (10) 0.0288 (10) 0.0235 (10) 0.0096 (8) 0.0062 (8) 0.0091 (8)
C4 0.0223 (10) 0.0304 (11) 0.0353 (11) 0.0078 (8) 0.0088 (8) 0.0132 (9)
C6 0.0222 (9) 0.0227 (9) 0.0225 (9) 0.0088 (7) 0.0083 (7) 0.0108 (8)
C2 0.0321 (10) 0.0236 (10) 0.0290 (10) 0.0129 (8) 0.0132 (8) 0.0096 (8)
C18 0.0287 (10) 0.0273 (10) 0.0288 (10) 0.0114 (8) 0.0123 (8) 0.0119 (9)
C7 0.0234 (9) 0.0242 (9) 0.0180 (9) 0.0085 (7) 0.0065 (7) 0.0068 (8)
C3 0.0277 (10) 0.0262 (10) 0.0398 (11) 0.0140 (8) 0.0192 (9) 0.0179 (9)
C21 0.0273 (10) 0.0261 (10) 0.0300 (10) 0.0086 (8) 0.0106 (8) 0.0160 (9)
C20 0.0254 (10) 0.0293 (10) 0.0291 (10) 0.0047 (8) 0.0082 (8) 0.0119 (9)
C16 0.0299 (10) 0.0284 (10) 0.0264 (10) 0.0109 (8) 0.0135 (8) 0.0103 (9)
C1 0.0230 (9) 0.0219 (9) 0.0249 (9) 0.0086 (7) 0.0072 (7) 0.0086 (8)
C15 0.0274 (10) 0.0221 (9) 0.0271 (10) 0.0081 (8) 0.0112 (8) 0.0083 (8)
C13 0.0233 (10) 0.0323 (11) 0.0311 (10) 0.0111 (8) 0.0076 (8) 0.0163 (9)
C19 0.0324 (11) 0.0262 (10) 0.0272 (10) 0.0064 (8) 0.0107 (8) 0.0074 (9)
C8 0.0227 (9) 0.0314 (10) 0.0235 (9) 0.0114 (8) 0.0072 (8) 0.0133 (8)
C17 0.0452 (12) 0.0280 (11) 0.0340 (11) 0.0132 (9) 0.0209 (10) 0.0105 (9)
C9 0.0341 (11) 0.0434 (12) 0.0309 (11) 0.0161 (10) 0.0141 (9) 0.0162 (10)
C14 0.0553 (15) 0.0302 (12) 0.0531 (15) 0.0198 (11) 0.0141 (12) 0.0171 (11)
C12 0.0286 (11) 0.0400 (13) 0.0507 (14) 0.0077 (9) 0.0107 (10) 0.0270 (12)
C10 0.0401 (13) 0.0665 (17) 0.0386 (13) 0.0212 (12) 0.0233 (11) 0.0272 (13)
C11 0.0323 (12) 0.0622 (17) 0.0528 (15) 0.0146 (11) 0.0216 (11) 0.0391 (14)

Geometric parameters (Å, º)

Cl1—C3 1.7332 (19) C7—H7 0.9800
S1—O1 1.4240 (15) C21—C20 1.499 (3)
S1—O2 1.4354 (14) C20—C19 1.522 (3)
S1—N1 1.6315 (17) C20—H10A 0.9700
S1—C1 1.7629 (19) C20—H10B 0.9700
N2—C15 1.507 (2) C16—C15 1.513 (3)
N2—C7 1.521 (2) C16—C17 1.515 (3)
N2—H3A 0.9000 C16—H11A 0.9700
N2—H3B 0.9000 C16—H11B 0.9700
O4—C21 1.328 (2) C15—H13A 0.9700
O4—H6 0.8200 C15—H13B 0.9700
O3—C21 1.204 (2) C13—C8 1.397 (3)
N1—C13 1.436 (3) C13—C12 1.400 (3)
N1—C14 1.480 (3) C19—H15A 0.9700
C5—C4 1.387 (3) C19—H15B 0.9700
C5—C6 1.392 (3) C8—C9 1.401 (3)
C5—H2 0.9300 C17—H17A 0.9700
C4—C3 1.381 (3) C17—H17B 0.9700
C4—H3 0.9300 C9—C10 1.384 (3)
C6—C1 1.398 (3) C9—H18 0.9300
C6—C7 1.513 (2) C14—H19A 0.9600
C2—C3 1.388 (3) C14—H19B 0.9600
C2—C1 1.393 (3) C14—H19C 0.9600
C2—H5 0.9300 C12—C11 1.369 (3)
C18—C17 1.512 (3) C12—H20 0.9300
C18—C19 1.518 (3) C10—C11 1.381 (4)
C18—H6A 0.9700 C10—H21 0.9300
C18—H6B 0.9700 C11—H22 0.9300
C7—C8 1.529 (2)
O1—S1—O2 119.59 (9) C15—C16—C17 109.79 (16)
O1—S1—N1 108.15 (9) C15—C16—H11A 109.7
O2—S1—N1 106.88 (8) C17—C16—H11A 109.7
O1—S1—C1 108.63 (9) C15—C16—H11B 109.7
O2—S1—C1 109.38 (8) C17—C16—H11B 109.7
N1—S1—C1 102.91 (8) H11A—C16—H11B 108.2
C15—N2—C7 115.42 (14) C2—C1—C6 122.19 (17)
C15—N2—H3A 108.4 C2—C1—S1 118.86 (15)
C7—N2—H3A 108.4 C6—C1—S1 118.74 (14)
C15—N2—H3B 108.4 N2—C15—C16 114.61 (16)
C7—N2—H3B 108.4 N2—C15—H13A 108.6
H3A—N2—H3B 107.5 C16—C15—H13A 108.6
C21—O4—H6 109.5 N2—C15—H13B 108.6
C13—N1—C14 117.16 (17) C16—C15—H13B 108.6
C13—N1—S1 120.96 (13) H13A—C15—H13B 107.6
C14—N1—S1 115.98 (15) C8—C13—C12 119.4 (2)
C4—C5—C6 121.92 (19) C8—C13—N1 125.42 (17)
C4—C5—H2 119.0 C12—C13—N1 115.16 (19)
C6—C5—H2 119.0 C18—C19—C20 113.90 (17)
C3—C4—C5 119.18 (18) C18—C19—H15A 108.8
C3—C4—H3 120.4 C20—C19—H15A 108.8
C5—C4—H3 120.4 C18—C19—H15B 108.8
C5—C6—C1 117.17 (17) C20—C19—H15B 108.8
C5—C6—C7 117.27 (17) H15A—C19—H15B 107.7
C1—C6—C7 125.46 (16) C13—C8—C9 117.75 (18)
C3—C2—C1 118.31 (18) C13—C8—C7 128.70 (17)
C3—C2—H5 120.8 C9—C8—C7 113.54 (18)
C1—C2—H5 120.8 C18—C17—C16 114.47 (17)
C17—C18—C19 112.27 (17) C18—C17—H17A 108.6
C17—C18—H6A 109.2 C16—C17—H17A 108.6
C19—C18—H6A 109.2 C18—C17—H17B 108.6
C17—C18—H6B 109.2 C16—C17—H17B 108.6
C19—C18—H6B 109.2 H17A—C17—H17B 107.6
H6A—C18—H6B 107.9 C10—C9—C8 122.2 (2)
C6—C7—N2 111.23 (14) C10—C9—H18 118.9
C6—C7—C8 120.45 (16) C8—C9—H18 118.9
N2—C7—C8 109.32 (14) N1—C14—H19A 109.5
C6—C7—H7 104.8 N1—C14—H19B 109.5
N2—C7—H7 104.8 H19A—C14—H19B 109.5
C8—C7—H7 104.8 N1—C14—H19C 109.5
C4—C3—C2 121.21 (18) H19A—C14—H19C 109.5
C4—C3—Cl1 119.27 (15) H19B—C14—H19C 109.5
C2—C3—Cl1 119.51 (16) C11—C12—C13 121.6 (2)
O3—C21—O4 122.96 (19) C11—C12—H20 119.2
O3—C21—C20 123.80 (19) C13—C12—H20 119.2
O4—C21—C20 113.22 (17) C11—C10—C9 119.1 (2)
C21—C20—C19 112.61 (16) C11—C10—H21 120.4
C21—C20—H10A 109.1 C9—C10—H21 120.4
C19—C20—H10A 109.1 C12—C11—C10 119.9 (2)
C21—C20—H10B 109.1 C12—C11—H22 120.0
C19—C20—H10B 109.1 C10—C11—H22 120.0
H10A—C20—H10B 107.8
O1—S1—N1—C13 166.82 (14) N1—S1—C1—C2 −116.33 (15)
O2—S1—N1—C13 36.83 (17) O1—S1—C1—C6 173.00 (14)
C1—S1—N1—C13 −78.34 (16) O2—S1—C1—C6 −54.86 (16)
O1—S1—N1—C14 −41.01 (17) N1—S1—C1—C6 58.50 (16)
O2—S1—N1—C14 −170.99 (15) C7—N2—C15—C16 −92.52 (19)
C1—S1—N1—C14 73.83 (17) C17—C16—C15—N2 −170.85 (16)
C6—C5—C4—C3 0.0 (3) C14—N1—C13—C8 −117.4 (2)
C4—C5—C6—C1 −0.8 (3) S1—N1—C13—C8 34.5 (3)
C4—C5—C6—C7 175.82 (17) C14—N1—C13—C12 61.3 (2)
C5—C6—C7—N2 −102.80 (18) S1—N1—C13—C12 −146.80 (15)
C1—C6—C7—N2 73.5 (2) C17—C18—C19—C20 −171.27 (17)
C5—C6—C7—C8 127.40 (18) C21—C20—C19—C18 −68.0 (2)
C1—C6—C7—C8 −56.3 (2) C12—C13—C8—C9 1.3 (3)
C15—N2—C7—C6 56.1 (2) N1—C13—C8—C9 179.94 (17)
C15—N2—C7—C8 −168.43 (15) C12—C13—C8—C7 −177.35 (18)
C5—C4—C3—C2 1.0 (3) N1—C13—C8—C7 1.3 (3)
C5—C4—C3—Cl1 −179.69 (14) C6—C7—C8—C13 27.4 (3)
C1—C2—C3—C4 −1.2 (3) N2—C7—C8—C13 −103.2 (2)
C1—C2—C3—Cl1 179.56 (13) C6—C7—C8—C9 −151.28 (17)
O3—C21—C20—C19 −26.4 (3) N2—C7—C8—C9 78.08 (19)
O4—C21—C20—C19 155.14 (17) C19—C18—C17—C16 −178.95 (17)
C3—C2—C1—C6 0.3 (3) C15—C16—C17—C18 −178.47 (17)
C3—C2—C1—S1 174.95 (13) C13—C8—C9—C10 −0.6 (3)
C5—C6—C1—C2 0.7 (3) C7—C8—C9—C10 178.25 (19)
C7—C6—C1—C2 −175.65 (17) C8—C13—C12—C11 −0.9 (3)
C5—C6—C1—S1 −174.00 (13) N1—C13—C12—C11 −179.73 (19)
C7—C6—C1—S1 9.7 (2) C8—C9—C10—C11 −0.5 (3)
O1—S1—C1—C2 −1.84 (17) C13—C12—C11—C10 −0.2 (3)
O2—S1—C1—C2 130.31 (15) C9—C10—C11—C12 0.9 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H3A···Cl2i 0.90 2.31 3.154 (2) 157
N2—H3B···O3ii 0.90 2.32 2.821 (2) 115
C16—H11B···O3ii 0.97 2.56 3.201 (2) 124
O4—H6···Cl2iii 0.82 2.22 3.043 (2) 176
C4—H3···Cl2iv 0.93 2.82 3.651 (2) 150
C18—H6A···O4v 0.97 2.56 3.467 (2) 157
C7—H7···Cl2 0.98 2.59 3.534 (2) 162
N2—H3B···S1 0.90 2.98 3.533 (2) 121
N2—H3B···O2 0.90 2.02 2.802 (2) 144
C2—H5···O1 0.93 2.52 2.894 (2) 104
C14—H19B···O1 0.96 2.48 2.881 (3) 105

Symmetry codes: (i) −x+2, −y+1, −z; (ii) −x+2, −y+1, −z+1; (iii) x, y, z+1; (iv) −x+1, −y+1, −z; (v) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2586).

References

  1. Guzman, H., Popov, A., Rammeloo, T. J. L., Remenar, J., Saoud, J. B. & Tawa, M. (2010). US Patent No. 20,100,112,051 A1 20100506.
  2. Hooft, R. (1998). COLLECT Nonius B V, Delft, The Netherlands.
  3. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  4. Orola, L., Veidis, M. V., Sarcevica, I., Actins, A., Belyakov, S. & Platonenko, A. (2012). Int. J. Pharm. 432, 50–56. [DOI] [PubMed]
  5. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global. DOI: 10.1107/S1600536812042432/pv2586sup1.cif

e-68-o3136-sup1.cif (23.1KB, cif)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES