Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Oct 20;68(Pt 11):o3137. doi: 10.1107/S1600536812040809

1-(Thio­phen-2-yl)-N-(4-{(E)-[(thio­phen-2-yl)meth­yl]imino­meth­yl}benzyl­idene)methanamine

Haleden Chiririwa a,*, John R Moss a, Denver Hendricks b, Reinout Meijboom c
PMCID: PMC3515239  PMID: 23284459

Abstract

The title compound C18H16N2S2, crystallizes with two independent half-mol­ecules in the asymmetric unit, in one of which the thio­phene rings are disordered in a 0.67:0.33 ratio. Each independent mol­ecule lies across a crystallographic centre of symmetry. The dihedral angle between central (half) benzene ring and the thiophene ring is 11.82°.

Related literature  

For similar thio­phenyl­dimine-based bridging ligands, see: Chakraborty et al. (1999); Haga & Koizumi (1985); Chiririwa et al. (2011a ,b ).graphic file with name e-68-o3137-scheme1.jpg

Experimental  

Crystal data  

  • C18H16N2S2

  • M r = 324.45

  • Triclinic, Inline graphic

  • a = 8.8517 (3) Å

  • b = 10.3937 (5) Å

  • c = 10.5763 (4) Å

  • α = 63.836 (2)°

  • β = 69.023 (2)°

  • γ = 72.394 (2)°

  • V = 803.22 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 173 K

  • 0.22 × 0.20 × 0.13 mm

Data collection  

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.931, T max = 0.959

  • 34407 measured reflections

  • 3282 independent reflections

  • 2478 reflections with I > 2σ(I)

  • R int = 0.052

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.125

  • S = 1.06

  • 3282 reflections

  • 206 parameters

  • 9 restraints

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.48 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus and XPREP (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005), ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812040809/go2071sup1.cif

e-68-o3137-sup1.cif (28.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812040809/go2071Isup2.hkl

e-68-o3137-Isup2.hkl (161KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812040809/go2071Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Mintek and Project AuTEK are acknowledged for funding this project.

supplementary crystallographic information

Comment

The title compound belongs to a class of tetradentate ligands. To the best of our knowledge, this is the second example of a neutral thiophenyldimine-based bridging ligand, the first of which was reported earlier by our group (Chiririwa et al., 2011a) and (Chiririwa et al., 2011b). This compound is expected to chelate in a tetradentate manner with both nitrogen atoms coordinating along with the two thiophenyl sulphur atoms. Chakraborty et al. reported coordination of similar ligands to ruthenium (Chakraborty et al. 1999) whilst Haga and Kiozumi reported their coordination to molybednum, (Haga & Koizumi,1985). The bond lengths N1A—C6A = 1.265 (3)and N1B—C6B = 1.266 (3) Å are consistent with C=N double bonding.

Experimental

A solution of benzene 1,4-dicarboxaldehyde (0.50 g, 3.73 mmol) in methanol (10 ml) was added dropwise to a stirred solution of 2-thiophenylmethylamine (1.20 g, 7.42 mmol) in methanol (10 ml). The mixture stirred at room temperature for ca 16 h. The precipitate was filtered off and washed with diethylether and dried under vacuum for 4 h affording a white powder in 85% yield. Crystals suitable for X-ray determination were obtained by recrystallization from CH2Cl2– hexane mixture at room temperature.: Calc. for C18H16N2S2: C, 66.63%; H, 4.97%; N, 8.63%; S, 19.77 Found: C, 66.59%; H, 4.62%; N, 8.72%; S, 19.65 1H NMR: (400 MHz) ?H 8.38 (t, 2H, J = 1.3 Hz) 7.82 (s, 2H) 7.25 (m, 4H) 7.00 (d, 4H, J = 3.4 Hz) 5.00 (d, 4H, J = 1.3 Hz. IR (KBr): 1612 cm-1 (C=N, imine)

Refinement

The methine and aromatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic, C—H = 0.99 Å and Uiso(H) = 1.2Ueq(C) for CH2 C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for CH. Disorder refinement models were applied to the thiophenes of one independent molecule in the asymmetric unit. Geometrical (FLAT) restaraints were applied to keep the ring C1B1-C2B2-C3B1-C3B2-S1B1-S1B2 planar. Bond distance (DFIX) and 1,3 distance similarity restraints (SADI) were applied to obtain reasonable geometries. Ellipsoid displacement (SIMU and DELU) restraints were also applied to the disordered moieties. Free variables were connected to the disordered component to add to unity.

Figures

Fig. 1.

Fig. 1.

The structure of the (1,4-phenylenebis(methan-1-yl-1-ylidene)) bis(1-(thiophen-2-yl)methanamine) showing 40% probability displacement ellipsoids. Hydrogen atoms were omitted for clarity.

Crystal data

C18H16N2S2 Z = 2
Mr = 324.45 F(000) = 340
Triclinic, P1 Dx = 1.341 Mg m3
Hall symbol: -p 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.8517 (3) Å Cell parameters from 34407 reflections
b = 10.3937 (5) Å θ = 2.9–26.4°
c = 10.5763 (4) Å µ = 0.33 mm1
α = 63.836 (2)° T = 173 K
β = 69.023 (2)° Plate, colourless
γ = 72.394 (2)° 0.22 × 0.20 × 0.13 mm
V = 803.22 (6) Å3

Data collection

Nonius KappaCCD diffractometer 3282 independent reflections
Radiation source: fine-focus sealed tube 2478 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.052
1.2° φ scans and ω scans θmax = 26.4°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = 0→11
Tmin = 0.931, Tmax = 0.959 k = −11→13
34407 measured reflections l = −11→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.056P)2 + 0.4946P] where P = (Fo2 + 2Fc2)/3
3282 reflections (Δ/σ)max < 0.001
206 parameters Δρmax = 0.34 e Å3
9 restraints Δρmin = −0.48 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1A 0.69140 (9) −0.07229 (9) 0.71753 (8) 0.0551 (3)
N1A 0.8877 (2) 0.1968 (2) 0.4771 (2) 0.0338 (5)
C1A 0.4849 (3) −0.0628 (3) 0.7957 (3) 0.0479 (7)
H1A 0.4372 −0.1242 0.8918 0.058*
C2A 0.3981 (3) 0.0419 (3) 0.7047 (3) 0.0431 (6)
H2A 0.2815 0.0627 0.7295 0.052*
C3A 0.4989 (3) 0.1187 (3) 0.5671 (3) 0.0383 (6)
H3A 0.4571 0.1966 0.4905 0.046*
C4A 0.6632 (3) 0.0676 (3) 0.5574 (3) 0.0322 (5)
C5A 0.8063 (3) 0.1240 (3) 0.4339 (3) 0.0352 (6)
H5A1 0.8850 0.0425 0.4092 0.042*
H5A2 0.7678 0.1938 0.3465 0.042*
C6A 0.8751 (3) 0.3337 (3) 0.4146 (3) 0.0312 (5)
H6A 0.8204 0.3833 0.3389 0.037*
C7A 0.9431 (3) 0.4184 (2) 0.4562 (2) 0.0284 (5)
C8A 1.0455 (3) 0.3496 (3) 0.5499 (3) 0.0327 (5)
H8A 1.0777 0.2468 0.5838 0.039*
C9A 0.8997 (3) 0.5696 (3) 0.4064 (3) 0.0334 (5)
H9A 0.8313 0.6177 0.3413 0.040*
N1B 0.1122 (2) 0.6222 (2) 1.0089 (2) 0.0352 (5)
C4B 0.3208 (3) 0.4419 (2) 0.9269 (3) 0.0335 (5)
C5B 0.1887 (3) 0.4689 (3) 1.0535 (3) 0.0366 (6)
H5B1 0.1048 0.4074 1.0881 0.044*
H5B2 0.2367 0.4426 1.1349 0.044*
C6B 0.1358 (3) 0.6967 (3) 1.0657 (3) 0.0324 (5)
H6B 0.2009 0.6504 1.1335 0.039*
C7B 0.0661 (3) 0.8528 (3) 1.0305 (3) 0.0316 (5)
C8B −0.0294 (3) 0.9267 (3) 0.9307 (3) 0.0327 (5)
H8B −0.0496 0.8767 0.8833 0.039*
C9B 0.0946 (3) 0.9276 (3) 1.0991 (3) 0.0332 (5)
H9B 0.1595 0.8779 1.1670 0.040*
S1B1 0.34911 (15) 0.29538 (12) 0.88477 (13) 0.0351 (3) 0.67
C1B1 0.5072 (4) 0.3432 (3) 0.7441 (3) 0.0555 (8)
H1B1 0.5647 0.2863 0.6858 0.067*
C2B1 0.5492 (3) 0.4673 (3) 0.7172 (3) 0.0534 (8)
H2B1 0.6371 0.5103 0.6402 0.064*
C3B1 0.4387 (8) 0.5249 (7) 0.8248 (6) 0.0351 (3) 0.67
H3B1 0.4460 0.6137 0.8260 0.042* 0.67
S1B2 0.4503 (4) 0.5553 (3) 0.8214 (4) 0.0443 (7) 0.33
C3B2 0.3679 (13) 0.3308 (11) 0.8727 (12) 0.0443 (7) 0.33
H3B2 0.3115 0.2505 0.9179 0.053* 0.33

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1A 0.0367 (4) 0.0570 (5) 0.0504 (5) −0.0094 (3) −0.0160 (3) 0.0026 (4)
N1A 0.0311 (11) 0.0349 (11) 0.0371 (11) −0.0090 (9) −0.0081 (9) −0.0134 (9)
C1A 0.0417 (15) 0.0519 (17) 0.0424 (16) −0.0179 (13) −0.0059 (12) −0.0085 (13)
C2A 0.0320 (13) 0.0457 (15) 0.0534 (17) −0.0068 (11) −0.0105 (12) −0.0204 (13)
C3A 0.0357 (13) 0.0390 (14) 0.0441 (15) −0.0068 (11) −0.0132 (11) −0.0167 (12)
C4A 0.0354 (13) 0.0311 (12) 0.0367 (13) −0.0079 (10) −0.0115 (10) −0.0155 (10)
C5A 0.0368 (13) 0.0357 (13) 0.0384 (14) −0.0084 (11) −0.0099 (11) −0.0171 (11)
C6A 0.0295 (12) 0.0350 (13) 0.0275 (12) −0.0078 (10) −0.0066 (9) −0.0097 (10)
C7A 0.0260 (11) 0.0302 (12) 0.0252 (11) −0.0086 (9) −0.0034 (9) −0.0073 (9)
C8A 0.0319 (12) 0.0281 (12) 0.0344 (13) −0.0068 (10) −0.0098 (10) −0.0064 (10)
C9A 0.0324 (12) 0.0332 (13) 0.0317 (13) −0.0070 (10) −0.0135 (10) −0.0049 (10)
N1B 0.0316 (11) 0.0335 (11) 0.0402 (12) −0.0020 (9) −0.0094 (9) −0.0160 (9)
C4B 0.0346 (13) 0.0326 (13) 0.0354 (13) −0.0008 (10) −0.0162 (10) −0.0123 (10)
C5B 0.0391 (14) 0.0308 (12) 0.0384 (14) −0.0037 (10) −0.0112 (11) −0.0125 (11)
C6B 0.0275 (12) 0.0340 (13) 0.0324 (13) −0.0038 (10) −0.0063 (10) −0.0118 (10)
C7B 0.0252 (11) 0.0348 (13) 0.0322 (13) −0.0048 (10) −0.0033 (9) −0.0137 (10)
C8B 0.0313 (12) 0.0356 (13) 0.0330 (13) −0.0078 (10) −0.0049 (10) −0.0158 (10)
C9B 0.0287 (12) 0.0367 (13) 0.0328 (13) −0.0047 (10) −0.0079 (10) −0.0126 (10)
S1B1 0.0441 (6) 0.0294 (6) 0.0375 (5) −0.0095 (4) −0.0131 (4) −0.0136 (5)
C1B1 0.0624 (19) 0.0591 (19) 0.0555 (19) 0.0135 (15) −0.0272 (16) −0.0368 (16)
C2B1 0.0373 (15) 0.067 (2) 0.0419 (16) −0.0066 (14) −0.0023 (12) −0.0158 (14)
C3B1 0.0441 (6) 0.0294 (6) 0.0375 (5) −0.0095 (4) −0.0131 (4) −0.0136 (5)
S1B2 0.0408 (12) 0.0379 (16) 0.0556 (13) −0.0146 (10) −0.0074 (10) −0.0177 (11)
C3B2 0.0408 (12) 0.0379 (16) 0.0556 (13) −0.0146 (10) −0.0074 (10) −0.0177 (11)

Geometric parameters (Å, º)

S1A—C1A 1.708 (3) C4B—C3B2 1.399 (5)
S1A—C4A 1.719 (3) C4B—C5B 1.500 (3)
N1A—C6A 1.265 (3) C4B—S1B2 1.640 (3)
N1A—C5A 1.473 (3) C4B—S1B1 1.694 (2)
C1A—C2A 1.342 (4) C5B—H5B1 0.9900
C1A—H1A 0.9500 C5B—H5B2 0.9900
C2A—C3A 1.424 (4) C6B—C7B 1.476 (3)
C2A—H2A 0.9500 C6B—H6B 0.9500
C3A—C4A 1.372 (3) C7B—C9B 1.394 (3)
C3A—H3A 0.9500 C7B—C8B 1.396 (3)
C4A—C5A 1.498 (3) C8B—C9Bii 1.381 (3)
C5A—H5A1 0.9900 C8B—H8B 0.9500
C5A—H5A2 0.9900 C9B—C8Bii 1.381 (3)
C6A—C7A 1.478 (3) C9B—H9B 0.9500
C6A—H6A 0.9500 S1B1—C1B1 1.642 (3)
C7A—C8A 1.394 (3) C1B1—C2B1 1.332 (3)
C7A—C9A 1.394 (3) C1B1—C3B2 1.459 (5)
C8A—C9Ai 1.380 (3) C1B1—H1B1 0.9500
C8A—H8A 0.9500 C2B1—C3B1 1.435 (5)
C9A—C8Ai 1.380 (3) C2B1—S1B2 1.591 (3)
C9A—H9A 0.9500 C2B1—H2B1 0.9500
N1B—C6B 1.266 (3) C3B1—H3B1 0.9500
N1B—C5B 1.461 (3) C3B2—H3B2 0.9500
C4B—C3B1 1.384 (5)
C1A—S1A—C4A 92.37 (13) C5B—C4B—S1B1 123.56 (17)
C6A—N1A—C5A 117.3 (2) S1B2—C4B—S1B1 115.94 (16)
C2A—C1A—S1A 111.7 (2) N1B—C5B—C4B 109.8 (2)
C2A—C1A—H1A 124.1 N1B—C5B—H5B1 109.7
S1A—C1A—H1A 124.1 C4B—C5B—H5B1 109.7
C1A—C2A—C3A 113.0 (2) N1B—C5B—H5B2 109.7
C1A—C2A—H2A 123.5 C4B—C5B—H5B2 109.7
C3A—C2A—H2A 123.5 H5B1—C5B—H5B2 108.2
C4A—C3A—C2A 112.4 (2) N1B—C6B—C7B 122.5 (2)
C4A—C3A—H3A 123.8 N1B—C6B—H6B 118.8
C2A—C3A—H3A 123.8 C7B—C6B—H6B 118.8
C3A—C4A—C5A 128.2 (2) C9B—C7B—C8B 119.3 (2)
C3A—C4A—S1A 110.46 (19) C9B—C7B—C6B 119.5 (2)
C5A—C4A—S1A 121.24 (18) C8B—C7B—C6B 121.2 (2)
N1A—C5A—C4A 109.30 (19) C9Bii—C8B—C7B 120.0 (2)
N1A—C5A—H5A1 109.8 C9Bii—C8B—H8B 120.0
C4A—C5A—H5A1 109.8 C7B—C8B—H8B 120.0
N1A—C5A—H5A2 109.8 C8Bii—C9B—C7B 120.7 (2)
C4A—C5A—H5A2 109.8 C8Bii—C9B—H9B 119.7
H5A1—C5A—H5A2 108.3 C7B—C9B—H9B 119.7
N1A—C6A—C7A 121.8 (2) C1B1—S1B1—C4B 94.00 (13)
N1A—C6A—H6A 119.1 C2B1—C1B1—C3B2 102.2 (3)
C7A—C6A—H6A 119.1 C2B1—C1B1—S1B1 115.4 (2)
C8A—C7A—C9A 118.8 (2) C2B1—C1B1—H1B1 122.3
C8A—C7A—C6A 121.2 (2) C3B2—C1B1—H1B1 135.5
C9A—C7A—C6A 120.0 (2) S1B1—C1B1—H1B1 122.3
C9Ai—C8A—C7A 120.2 (2) C1B1—C2B1—C3B1 108.1 (3)
C9Ai—C8A—H8A 119.9 C1B1—C2B1—S1B2 119.7 (2)
C7A—C8A—H8A 119.9 C1B1—C2B1—H2B1 126.0
C8Ai—C9A—C7A 121.1 (2) C3B1—C2B1—H2B1 126.0
C8Ai—C9A—H9A 119.5 S1B2—C2B1—H2B1 114.3
C7A—C9A—H9A 119.5 C4B—C3B1—C2B1 115.3 (4)
C6B—N1B—C5B 116.7 (2) C4B—C3B1—H3B1 122.3
C3B1—C4B—C3B2 97.2 (4) C2B1—C3B1—H3B1 122.3
C3B1—C4B—C5B 129.2 (3) C2B1—S1B2—C4B 94.97 (16)
C3B2—C4B—C5B 133.6 (3) C4B—C3B2—C1B1 117.2 (5)
C3B2—C4B—S1B2 105.9 (3) C4B—C3B2—H3B2 121.4
C5B—C4B—S1B2 120.50 (18) C1B1—C3B2—H3B2 121.4
C3B1—C4B—S1B1 107.2 (3)
C4A—S1A—C1A—C2A −0.1 (2) C3B1—C4B—S1B1—C1B1 0.7 (4)
S1A—C1A—C2A—C3A −0.2 (3) C3B2—C4B—S1B1—C1B1 −2 (4)
C1A—C2A—C3A—C4A 0.5 (3) C5B—C4B—S1B1—C1B1 −179.4 (2)
C2A—C3A—C4A—C5A −177.0 (2) S1B2—C4B—S1B1—C1B1 −0.5 (2)
C2A—C3A—C4A—S1A −0.6 (3) C4B—S1B1—C1B1—C2B1 −0.5 (3)
C1A—S1A—C4A—C3A 0.4 (2) C4B—S1B1—C1B1—C3B2 2 (3)
C1A—S1A—C4A—C5A 177.1 (2) C3B2—C1B1—C2B1—C3B1 −0.3 (9)
C6A—N1A—C5A—C4A −110.5 (2) S1B1—C1B1—C2B1—C3B1 0.2 (5)
C3A—C4A—C5A—N1A 108.5 (3) C3B2—C1B1—C2B1—S1B2 0.9 (7)
S1A—C4A—C5A—N1A −67.7 (2) S1B1—C1B1—C2B1—S1B2 1.5 (4)
C5A—N1A—C6A—C7A 176.1 (2) C3B2—C4B—C3B1—C2B1 −0.2 (8)
N1A—C6A—C7A—C8A 10.0 (3) C5B—C4B—C3B1—C2B1 179.4 (3)
N1A—C6A—C7A—C9A −167.3 (2) S1B2—C4B—C3B1—C2B1 172 (4)
C9A—C7A—C8A—C9Ai 0.9 (4) S1B1—C4B—C3B1—C2B1 −0.7 (7)
C6A—C7A—C8A—C9Ai −176.4 (2) C1B1—C2B1—C3B1—C4B 0.4 (7)
C8A—C7A—C9A—C8Ai −0.9 (4) S1B2—C2B1—C3B1—C4B −174 (3)
C6A—C7A—C9A—C8Ai 176.4 (2) C1B1—C2B1—S1B2—C4B −1.5 (4)
C6B—N1B—C5B—C4B −112.6 (2) C3B1—C2B1—S1B2—C4B 4 (2)
C3B1—C4B—C5B—N1B 42.8 (6) C3B1—C4B—S1B2—C2B1 −6 (3)
C3B2—C4B—C5B—N1B −137.8 (9) C3B2—C4B—S1B2—C2B1 1.4 (8)
S1B2—C4B—C5B—N1B 44.0 (3) C5B—C4B—S1B2—C2B1 −179.9 (2)
S1B1—C4B—C5B—N1B −137.1 (2) S1B1—C4B—S1B2—C2B1 1.1 (3)
C5B—N1B—C6B—C7B 179.9 (2) C3B1—C4B—C3B2—C1B1 −0.1 (11)
N1B—C6B—C7B—C9B 178.8 (2) C5B—C4B—C3B2—C1B1 −179.6 (5)
N1B—C6B—C7B—C8B −0.5 (4) S1B2—C4B—C3B2—C1B1 −1.2 (13)
C9B—C7B—C8B—C9Bii 0.0 (4) S1B1—C4B—C3B2—C1B1 177 (5)
C6B—C7B—C8B—C9Bii 179.3 (2) C2B1—C1B1—C3B2—C4B 0.3 (12)
C8B—C7B—C9B—C8Bii 0.0 (4) S1B1—C1B1—C3B2—C4B −178 (4)
C6B—C7B—C9B—C8Bii −179.3 (2)

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x, −y+2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GO2071).

References

  1. Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2007). APEX2, SAINT-Plus, XPREP and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chakraborty, S., Munshi, P. & Lahiri, G. K. (1999). Polyhedron, 18, 1437–1444.
  4. Chiririwa, H., Meijboom, R. & Omondi, B. (2011b). Acta Cryst. E67, o922. [DOI] [PMC free article] [PubMed]
  5. Chiririwa, H., Moss, J. R., Su, H., Hendricks, D. & Meijboom, R. (2011a). Acta Cryst. E67, o921. [DOI] [PMC free article] [PubMed]
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  8. Haga, M. & Koizumi, K. (1985). Inorg. Chim. Acta, 104, 47–50.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812040809/go2071sup1.cif

e-68-o3137-sup1.cif (28.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812040809/go2071Isup2.hkl

e-68-o3137-Isup2.hkl (161KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812040809/go2071Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES