Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Oct 20;68(Pt 11):o3142. doi: 10.1107/S1600536812041682

N,N-Bis(2-hy­droxy­eth­yl)-4-methyl­benzene­sulfonamide

Nafeesa Mushtaq a, Islam Ullah Khan a,*, Muhammad Yar a, Sadia Afzal a, Jim Simpson b
PMCID: PMC3515243  PMID: 23284463

Abstract

In the title compound C11H17NO4S, an intra­molecular O—H⋯O hydrogen bond forms an S(8) ring and determines the conformation of the bis­(2-hy­droxy­eth­yl) segment of the mol­ecule, holding the two CH2CH2OH groups close to coplanar (r.m.s. deviation = 0.185 Å). In the crystal, O—H⋯O hydrogen bonds link the mol­ecules into zigzag chains along the b axis. Weaker additional C—H⋯O and C—H⋯π contacts generate a three dimensional network, with mol­ecules stacked along the b-axis direction.

Related literature  

For pharmaceutical background to sulfonamides, see: Casini et al. (2002); Chambers & Jawetz (1998). For an alternative synthesis, see: Hori et al. (2011). For a related structure, see: Yoon et al. (2001). For standard bond lengths, see: Allen et al. (1987) and for hydrogen-bond motifs, see: Bernstein et al. (1995). graphic file with name e-68-o3142-scheme1.jpg

Experimental  

Crystal data  

  • C11H17NO4S

  • M r = 259.32

  • Orthorhombic, Inline graphic

  • a = 17.9308 (5) Å

  • b = 7.1881 (2) Å

  • c = 19.8333 (6) Å

  • V = 2556.28 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 296 K

  • 0.16 × 0.12 × 0.10 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • 3124 measured reflections

  • 3124 independent reflections

  • 2343 reflections with I > 2σ(I)

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.161

  • S = 0.99

  • 3124 reflections

  • 161 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 and SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97, ORTEP-3 (Farrugia, 1997), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536812041682/nk2181sup1.cif

e-68-o3142-sup1.cif (22.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812041682/nk2181Isup2.hkl

e-68-o3142-Isup2.hkl (153.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4O⋯O3 0.76 (7) 1.89 (7) 2.634 (3) 166 (7)
O3—H3O⋯O4i 0.75 (4) 1.92 (4) 2.661 (3) 172 (4)
C10—H10A⋯O1ii 0.97 2.61 3.361 (3) 135
C3—H3⋯Cg1iii 0.93 2.78 3.522 (2) 138

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors acknowledge Mr Ejaz for his kind assistance with the X-ray data collection.

supplementary crystallographic information

Comment

Sulfonamides are an important class of drugs with antibacterial, diuretic, hypoglycemic, antithyroid and antitumor action (Casini et al., 2002). Certain sulfonamides are used in combination with other drugs as antimicrobial agents and this paved the way for an antibiotic revolution in medicine. Sulfonamides also act as anti-metabolites and compete for the enzyme involved in the production of folic acid (Chambers & Jawetz, 1998). Most sulfonamides behave as weak acids and binding to basic amino acids can occur. The crystal structure of a tritosylate of diethanolamine has been reported in which the three tosyl groups are separated from one another as much as possible, to minimize steric repulsion (Yoon et al., 2001). The promising pharmaceutical potential of sulfonamides has prompted us to synthesize and characterize diethanolamine derived sulfonamides. Diethanolamine (DEA) itself has skin irritant characteristics; however, when DEA is transformed into new materials, the resulting compounds may become pharmaceutically useful. We therefore synthesized N,N-bis(2-hydroxyethyl)-4-methylbenzenesulfonamide (N-tosyl diethanolamine) (1) and report its molecular and crystal structure here.

The molecular structure of (1) is shown in Fig. 1. The tolyl ring (C1···C6) is inclined at dihedral angles of 27.29 (0.16) ° and 37.78 (0.17) ° with respect to the N1/C8/C9 and N1/C10/C11 planes respectively. Bond distances (Allen et al., 1987) and angles within the molecule are normal and similar to those reported for N,N-bis(tosyloxyethyl)-p-toluenesulfonamide (Yoon et al., 2001). The nitrogen atom of the diethanolamine substituent is approximately sp3 hybridized with the geometry around the N1 atom close to pyramidal [C8—N1—S1 = 117.49 (14)°, C10—N1—S1 = 116.76 (14)° and C8—N1—C10 = 117.98 (18)°]. The two ethanol substituents are unsymmetrically oriented around the nitrogen atom with their conformations ultimately determined by an intramolecular O4—H4···O3 hydrogen bond that forms an S(8) ring (Bernstein et al., 1995).

In the crystal structure intermolecular O3—H3···O4 hydrogen bonds, Table 1, link molecules into zigzag chains along the b axis, Fig 2. C3—H3···π contacts, together with additional C10—H10A···O1 hydrogen bonds, further connect the chains to form a three-dimensional network structure, with molecules stacked along b, Fig 3.

Experimental

Tosyl chloride (0.836 g, 4.4 mmol) was added to a flask containing diethanolamine (0.42 g, 4 mmol) dissolved in CH2Cl2. Pyridine was added as a base (0.35 g, 4.4 mmol) and the solution refluxed for 4 hrs. On completion of the reaction, the pyridine was removed in vacuo and the product purified by crystallization. White crystals were obtained with an overall yield of 77%; Rf 0.13 (1:1 hexane and ethyl acetate). M.P: 95–98 0 C; 1H NMR 500 MHz, CDCl3: 7.70 (d, 2H), 7.33 (d, 2H), 3.87 (t, –CH2OH, 4H), 3.23 (t, –CH2N–, 4H), 2.43 (s, –CH3, 3H). The synthesis of (1) has also been reported using triethylamine rather than pyridine (Hori et al., 2011).

Refinement

H atoms of the OH groups were located in a difference Fourier map and their coordinates refined with Ueq = 1.5Ueq (O). Other H-atoms were refined using a riding model with d(C—H) = 0.93 Å for aromatic, 0.97 Å and for CH2 H atoms with Uiso = 1.2Ueq (C) and 0.96 Å, Uiso = 1.5Ueq (C) for CH3 H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (1) showing the atom numbering scheme with displacement ellipsoids drawn at the 50% probability level. The intramolecular hydrogen bond is drawn as an open dashed line.

Fig. 2.

Fig. 2.

Zigzag chains of molecules formed along b by intermolecular O—H···O hydrogen bonds, shown as dashed lines.

Fig. 3.

Fig. 3.

Overall packing for (1) viewed along the b axis with hydrogen bonds drawn as dashed lines.

Crystal data

C11H17NO4S F(000) = 1104
Mr = 259.32 Dx = 1.348 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 4787 reflections
a = 17.9308 (5) Å θ = 2.3–27.7°
b = 7.1881 (2) Å µ = 0.26 mm1
c = 19.8333 (6) Å T = 296 K
V = 2556.28 (13) Å3 Block, colourless
Z = 8 0.16 × 0.12 × 0.10 mm

Data collection

Bruker Kappa APEXII CCD diffractometer 2343 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.000
Graphite monochromator θmax = 28.3°, θmin = 3.1°
φ and ω scans h = 0→23
3124 measured reflections k = 0→9
3124 independent reflections l = 0→25

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161 H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0948P)2 + 1.0844P] where P = (Fo2 + 2Fc2)/3
3124 reflections (Δ/σ)max = 0.009
161 parameters Δρmax = 0.45 e Å3
0 restraints Δρmin = −0.39 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.20186 (10) 0.1722 (3) 0.09437 (9) 0.0733 (6)
O2 0.08536 (10) 0.0146 (2) 0.06009 (8) 0.0598 (4)
S1 0.13232 (3) 0.17523 (7) 0.05993 (3) 0.04344 (19)
C1 0.15067 (10) 0.2344 (3) −0.02460 (10) 0.0382 (4)
C2 0.21585 (12) 0.3277 (3) −0.04138 (12) 0.0501 (5)
H2 0.2511 0.3542 −0.0084 0.060*
C3 0.22799 (14) 0.3806 (3) −0.10709 (13) 0.0575 (6)
H3 0.2716 0.4437 −0.1181 0.069*
C4 0.17630 (14) 0.3417 (3) −0.15754 (12) 0.0529 (6)
C7 0.1893 (2) 0.4011 (5) −0.22931 (15) 0.0846 (9)
H7A 0.2302 0.3318 −0.2478 0.127*
H7B 0.2008 0.5315 −0.2305 0.127*
H7C 0.1452 0.3778 −0.2554 0.127*
C5 0.11233 (13) 0.2452 (3) −0.13986 (11) 0.0501 (5)
H5 0.0777 0.2156 −0.1731 0.060*
C6 0.09883 (11) 0.1920 (3) −0.07401 (10) 0.0420 (4)
H6 0.0553 0.1284 −0.0630 0.050*
N1 0.08353 (9) 0.3445 (2) 0.09165 (9) 0.0429 (4)
C8 0.00254 (12) 0.3381 (3) 0.08243 (11) 0.0495 (5)
H8A −0.0087 0.2717 0.0411 0.059*
H8B −0.0162 0.4640 0.0777 0.059*
C9 −0.03700 (14) 0.2449 (4) 0.14009 (13) 0.0635 (7)
H9A −0.0899 0.2359 0.1302 0.076*
H9B −0.0177 0.1200 0.1460 0.076*
O3 −0.02636 (12) 0.3483 (3) 0.19990 (9) 0.0680 (6)
H3O −0.036 (2) 0.286 (6) 0.2288 (19) 0.102*
C10 0.11973 (15) 0.5289 (3) 0.09459 (12) 0.0600 (7)
H10A 0.1681 0.5203 0.0729 0.072*
H10B 0.0899 0.6163 0.0689 0.072*
C11 0.12997 (17) 0.6026 (5) 0.16224 (16) 0.0775 (9)
H11A 0.1668 0.5252 0.1844 0.093*
H11B 0.1518 0.7254 0.1576 0.093*
O4 0.07285 (19) 0.6183 (4) 0.20375 (14) 0.1263 (13)
H4O 0.049 (3) 0.532 (10) 0.207 (3) 0.190*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0538 (10) 0.1121 (17) 0.0539 (10) 0.0251 (9) −0.0090 (8) −0.0026 (10)
O2 0.0809 (11) 0.0353 (8) 0.0632 (10) 0.0006 (7) 0.0116 (8) 0.0062 (7)
S1 0.0454 (3) 0.0439 (3) 0.0411 (3) 0.00854 (19) 0.0022 (2) −0.0011 (2)
C1 0.0384 (9) 0.0358 (9) 0.0404 (10) 0.0034 (7) 0.0051 (8) −0.0069 (8)
C2 0.0441 (11) 0.0514 (12) 0.0548 (13) −0.0088 (9) 0.0050 (9) −0.0136 (10)
C3 0.0587 (13) 0.0475 (12) 0.0664 (15) −0.0128 (10) 0.0219 (11) −0.0084 (11)
C4 0.0680 (14) 0.0399 (11) 0.0508 (12) 0.0061 (9) 0.0193 (11) −0.0007 (9)
C7 0.116 (3) 0.080 (2) 0.0577 (16) 0.0089 (18) 0.0318 (16) 0.0138 (15)
C5 0.0536 (12) 0.0520 (12) 0.0447 (11) 0.0054 (10) −0.0009 (9) −0.0071 (10)
C6 0.0383 (10) 0.0427 (11) 0.0449 (11) −0.0004 (8) 0.0026 (8) −0.0057 (8)
N1 0.0449 (9) 0.0390 (9) 0.0447 (9) −0.0018 (6) 0.0129 (7) −0.0056 (7)
C8 0.0488 (11) 0.0580 (13) 0.0418 (11) 0.0102 (9) 0.0038 (9) −0.0003 (10)
C9 0.0537 (13) 0.0734 (16) 0.0634 (15) −0.0154 (12) 0.0206 (11) −0.0090 (13)
O3 0.0879 (13) 0.0678 (12) 0.0484 (10) −0.0134 (9) 0.0284 (9) 0.0010 (8)
C10 0.0765 (15) 0.0487 (13) 0.0548 (14) −0.0185 (11) 0.0248 (12) −0.0147 (11)
C11 0.0856 (19) 0.080 (2) 0.0669 (18) −0.0254 (15) 0.0062 (14) −0.0239 (15)
O4 0.171 (3) 0.116 (2) 0.0927 (17) −0.0743 (19) 0.0787 (18) −0.0682 (16)

Geometric parameters (Å, º)

O1—S1 1.4220 (18) C6—H6 0.9300
O2—S1 1.4291 (18) N1—C8 1.465 (3)
S1—N1 1.6252 (17) N1—C10 1.477 (3)
S1—C1 1.761 (2) C8—C9 1.503 (3)
C1—C2 1.388 (3) C8—H8A 0.9700
C1—C6 1.385 (3) C8—H8B 0.9700
C2—C3 1.375 (4) C9—O3 1.413 (3)
C2—H2 0.9300 C9—H9A 0.9700
C3—C4 1.392 (4) C9—H9B 0.9700
C3—H3 0.9300 O3—H3O 0.75 (4)
C4—C5 1.385 (3) C10—C11 1.454 (4)
C4—C7 1.504 (3) C10—H10A 0.9700
C7—H7A 0.9600 C10—H10B 0.9700
C7—H7B 0.9600 C11—O4 1.319 (4)
C7—H7C 0.9600 C11—H11A 0.9700
C5—C6 1.382 (3) C11—H11B 0.9700
C5—H5 0.9300 O4—H4O 0.76 (7)
O1—S1—O2 120.20 (12) C8—N1—S1 117.52 (14)
O1—S1—N1 107.31 (11) C10—N1—S1 116.78 (14)
O2—S1—N1 106.67 (10) N1—C8—C9 112.75 (19)
O1—S1—C1 107.29 (10) N1—C8—H8A 109.0
O2—S1—C1 107.90 (10) C9—C8—H8A 109.0
N1—S1—C1 106.77 (9) N1—C8—H8B 109.0
C2—C1—C6 120.13 (19) C9—C8—H8B 109.0
C2—C1—S1 120.15 (17) H8A—C8—H8B 107.8
C6—C1—S1 119.70 (15) O3—C9—C8 109.9 (2)
C3—C2—C1 119.6 (2) O3—C9—H9A 109.7
C3—C2—H2 120.2 C8—C9—H9A 109.7
C1—C2—H2 120.2 O3—C9—H9B 109.7
C2—C3—C4 121.3 (2) C8—C9—H9B 109.7
C2—C3—H3 119.3 H9A—C9—H9B 108.2
C4—C3—H3 119.3 C9—O3—H3O 107 (3)
C5—C4—C3 118.0 (2) C11—C10—N1 114.8 (2)
C5—C4—C7 120.6 (3) C11—C10—H10A 108.6
C3—C4—C7 121.3 (2) N1—C10—H10A 108.6
C4—C7—H7A 109.5 C11—C10—H10B 108.6
C4—C7—H7B 109.5 N1—C10—H10B 108.6
H7A—C7—H7B 109.5 H10A—C10—H10B 107.6
C4—C7—H7C 109.5 O4—C11—C10 120.6 (3)
H7A—C7—H7C 109.5 O4—C11—H11A 107.2
H7B—C7—H7C 109.5 C10—C11—H11A 107.2
C6—C5—C4 121.5 (2) O4—C11—H11B 107.2
C6—C5—H5 119.2 C10—C11—H11B 107.2
C4—C5—H5 119.2 H11A—C11—H11B 106.8
C5—C6—C1 119.36 (19) C10—C11—H4O 105 (2)
C5—C6—H6 120.3 H11A—C11—H4O 99.7
C1—C6—H6 120.3 H11B—C11—H4O 129.5
C8—N1—C10 117.96 (18) C11—O4—H4O 115 (5)
O1—S1—C1—C2 −22.1 (2) C2—C1—C6—C5 −0.7 (3)
O2—S1—C1—C2 −152.92 (17) S1—C1—C6—C5 177.53 (16)
N1—S1—C1—C2 92.73 (18) O1—S1—N1—C8 −159.22 (16)
O1—S1—C1—C6 159.73 (17) O2—S1—N1—C8 −29.17 (18)
O2—S1—C1—C6 28.87 (19) C1—S1—N1—C8 86.00 (16)
N1—S1—C1—C6 −85.47 (17) O1—S1—N1—C10 52.0 (2)
C6—C1—C2—C3 1.2 (3) O2—S1—N1—C10 −177.94 (17)
S1—C1—C2—C3 −177.04 (17) C1—S1—N1—C10 −62.76 (19)
C1—C2—C3—C4 −0.4 (3) C10—N1—C8—C9 −119.1 (2)
C2—C3—C4—C5 −0.9 (3) S1—N1—C8—C9 92.5 (2)
C2—C3—C4—C7 179.5 (2) N1—C8—C9—O3 63.5 (3)
C3—C4—C5—C6 1.4 (3) C8—N1—C10—C11 94.0 (3)
C7—C4—C5—C6 −179.0 (2) S1—N1—C10—C11 −117.4 (2)
C4—C5—C6—C1 −0.6 (3) N1—C10—C11—O4 −54.6 (4)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C1–C6 benzene ring.

D—H···A D—H H···A D···A D—H···A
O4—H4O···O3 0.76 (7) 1.89 (7) 2.634 (3) 166 (7)
O3—H3O···O4i 0.75 (4) 1.92 (4) 2.661 (3) 172 (4)
C10—H10A···O1ii 0.97 2.61 3.361 (3) 135
C3—H3···Cg1iii 0.93 2.78 3.522 (2) 138

Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) −x+1/2, y+1/2, z; (iii) x, −y−1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2181).

References

  1. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Casini, A., Scozzafava, A., Mastrolorenzo, A. & Supuran, L. T. (2002). Curr. Cancer Drug Targets, 2, 55–75. [DOI] [PubMed]
  6. Chambers, H. F. & Jawetz, E. (1998). Sulfonamides, trimethoprim, and quinolones, in basic and clinical pharmacology, edited by B. G. Katzung, pp. 761–763. Stamford: Appleton–Lange.
  7. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  8. Hori, Y., Pei, N., Kumagai, R. & Sasanuma, Y. (2011). Polym. Chem. 2, 2183–2185.
  9. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  13. Yoon, I., Park, K.-M. & Lee, S. S. (2001). Acta Cryst. C57, 321–322. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536812041682/nk2181sup1.cif

e-68-o3142-sup1.cif (22.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812041682/nk2181Isup2.hkl

e-68-o3142-Isup2.hkl (153.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES