Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Oct 20;68(Pt 11):o3148. doi: 10.1107/S160053681204086X

(Z)-4-[(2-Amino-4,5-dichloro­anilino)(phenyl)methyl­idene]-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one

Dan Zou a, Xingqiang Lü a, Shunsheng Zhao b, Xiangrong Liu b,*
PMCID: PMC3515247  PMID: 23284467

Abstract

The mol­ecule of the title compound, C23H18Cl2N4O, assumes a non-planar conformation in which the pyrazolone ring forms dihedral angles of 32.61 (19), 76.73 (14) and 52.57 (19)° with the three benzene rings. The secondary amino group is involved in an intra­molecular N—H⋯O hydrogen bond. In the crystal, mol­ecules are linked by pairs of N—H⋯O hydrogen bonds, forming inversion dimers. An offset stacking inter­action is observed between the chloro-substituted benzene rings protruding on both sides of these dimers [centroid–centroid distance = 3.862 (1) Å].

Related literature  

For related structures, see: Lu et al. (2011). For bond-length data, see: Allen et al. (1987). For the catalytic properties of asymmetric Schiff bases, see: Caboni et al. (2012). For the synthesis, see: Hennig & Mann (1988).graphic file with name e-68-o3148-scheme1.jpg

Experimental  

Crystal data  

  • C23H18Cl2N4O

  • M r = 437.31

  • Triclinic, Inline graphic

  • a = 8.0653 (16) Å

  • b = 10.931 (2) Å

  • c = 13.851 (3) Å

  • α = 111.627 (3)°

  • β = 90.775 (3)°

  • γ = 110.226 (3)°

  • V = 1051.1 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 296 K

  • 0.30 × 0.21 × 0.18 mm

Data collection  

  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.857, T max = 1.000

  • 5308 measured reflections

  • 3688 independent reflections

  • 1992 reflections with I > 2σ(I)

  • R int = 0.027

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.060

  • wR(F 2) = 0.189

  • S = 1.03

  • 3688 reflections

  • 280 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.45 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and local programs.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681204086X/fy2067sup1.cif

e-68-o3148-sup1.cif (18.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681204086X/fy2067Isup2.hkl

e-68-o3148-Isup2.hkl (180.8KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681204086X/fy2067Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1 0.86 2.01 2.735 (4) 141
N4—H4B⋯O1i 0.88 (2) 2.18 (2) 3.022 (5) 162 (4)

Symmetry code: (i) Inline graphic.

Acknowledgments

The project was supported by the National Natural Science Foundation of China (program Nos. 21103135 and 21073139), the Natural Science Basic Research Plan in Shaanxi Province of China (program No. 2011JQ2011) and the Scientific Research Program Funded by Shaanxi Provincial Education Department (program No.12 J K0622).

supplementary crystallographic information

Comment

Asymmetrical Schiff bases are of interest due to their catalytic activity and the selectivity of their transition metal complexes in various reactions. Several asymmetrical Schiff base ligands and their transition metal complexes have been synthesized and studied. Here we report the crystal structure of a novel asymmetrical Schiff base ligand (Fig. 1). Bond lengths of the compound are in the range of normal values (Allen et al., 1987) and are comparable to those observed in similar compounds (Lu et al., 2011). The molecules are linked by N—H···O hydrogen bonds and stacking interaction, as shown in Fig. 2. The distance between the centroids of adjacent rings (C18 to C23, x, y, z and -x + 2, -y + 1, -z + 1) is 3.862 (1) Å.

Experimental

The title compound was obtained according to the synthetic procedure of Hennig & Mann (1988) with some modification. 1,2-diamino-4,5-dichlorobenzene and 4-benzoyl-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one were refluxed for 2 h in a molar ratio of 1:1 in absolute ethanol to give the product. The single-crystal suitble for X-ray diffraction was obtained by slow evaporation of the ethanolic solution of the title compound.

Refinement

H atoms of –NH2 group were located from a difference map and refined with a distance restraint of N—H = 0.87 (2) Å. Other H atoms were positioned geometrically and refined using a riding model with C—H = 0.95–0.99 Å, and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C/N). The reflection -2 1 1 is a strong outlier and was omitted in the refinement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

The packing of (I), showing molecules connected by hydrogen bonds (dashed lines) and stacking interaction. H atoms not involved in hydrogen bonding have been omitted.

Crystal data

C23H18Cl2N4O Z = 2
Mr = 437.31 F(000) = 452
Triclinic, P1 Dx = 1.382 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.0653 (16) Å Cell parameters from 3250 reflections
b = 10.931 (2) Å θ = 1.8–25.2°
c = 13.851 (3) Å µ = 0.33 mm1
α = 111.627 (3)° T = 296 K
β = 90.775 (3)° Block, red
γ = 110.226 (3)° 0.30 × 0.21 × 0.18 mm
V = 1051.1 (4) Å3

Data collection

Bruker SMART 1K CCD area-detector diffractometer 3688 independent reflections
Radiation source: fine-focus sealed tube 1992 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.027
thin–slice ω scans θmax = 25.1°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) h = −9→7
Tmin = 0.857, Tmax = 1.000 k = −13→12
5308 measured reflections l = −15→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.189 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0881P)2] where P = (Fo2 + 2Fc2)/3
3688 reflections (Δ/σ)max < 0.001
280 parameters Δρmax = 0.51 e Å3
2 restraints Δρmin = −0.45 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl2 1.11130 (17) 0.22914 (15) 0.36132 (9) 0.0878 (5)
Cl1 1.18254 (17) 0.24718 (17) 0.59173 (10) 0.0939 (5)
O1 0.5427 (3) 0.6431 (3) 0.7490 (2) 0.0541 (7)
N2 0.2712 (4) 0.4857 (3) 0.8999 (2) 0.0573 (9)
N3 0.6743 (4) 0.4320 (3) 0.6750 (2) 0.0498 (8)
H3A 0.6612 0.5073 0.6759 0.060*
N1 0.3415 (4) 0.5927 (3) 0.8613 (2) 0.0511 (8)
C19 0.9177 (5) 0.3465 (4) 0.6293 (3) 0.0503 (10)
H19A 0.9434 0.3579 0.6985 0.060*
C22 0.8476 (5) 0.3187 (4) 0.4243 (3) 0.0502 (10)
H22A 0.8266 0.3111 0.3558 0.060*
C18 0.7801 (5) 0.3803 (4) 0.6009 (3) 0.0433 (9)
C9 0.3620 (5) 0.4033 (4) 0.8684 (3) 0.0532 (10)
C6 0.2573 (5) 0.6900 (4) 0.8746 (3) 0.0482 (9)
C23 0.7409 (5) 0.3646 (4) 0.4970 (3) 0.0451 (9)
C11 0.5925 (5) 0.3812 (4) 0.7431 (3) 0.0444 (9)
C7 0.4691 (5) 0.5709 (4) 0.8000 (3) 0.0455 (9)
C20 1.0185 (5) 0.2954 (4) 0.5552 (3) 0.0526 (10)
C12 0.6100 (5) 0.2515 (4) 0.7451 (3) 0.0459 (9)
N4 0.6018 (5) 0.3963 (4) 0.4673 (3) 0.0624 (10)
C8 0.4918 (5) 0.4480 (4) 0.8058 (3) 0.0444 (9)
C21 0.9834 (5) 0.2847 (4) 0.4539 (3) 0.0538 (10)
C13 0.7013 (5) 0.2581 (4) 0.8339 (3) 0.0537 (10)
H13A 0.7464 0.3428 0.8934 0.064*
C5 0.0782 (6) 0.6554 (5) 0.8833 (3) 0.0607 (11)
H5A 0.0107 0.5666 0.8825 0.073*
C1 0.3573 (6) 0.8244 (4) 0.8808 (3) 0.0623 (11)
H1A 0.4793 0.8504 0.8782 0.075*
C17 0.5389 (5) 0.1236 (4) 0.6589 (3) 0.0625 (11)
H17A 0.4743 0.1174 0.6000 0.075*
C15 0.6556 (7) 0.0121 (5) 0.7463 (4) 0.0749 (14)
H15A 0.6714 −0.0683 0.7462 0.090*
C10 0.3125 (6) 0.2748 (4) 0.8947 (4) 0.0731 (14)
H10A 0.2210 0.2745 0.9383 0.110*
H10B 0.4161 0.2775 0.9316 0.110*
H10C 0.2687 0.1904 0.8310 0.110*
C4 −0.0012 (6) 0.7519 (6) 0.8933 (3) 0.0719 (13)
H4C −0.1228 0.7268 0.8969 0.086*
C2 0.2773 (7) 0.9199 (5) 0.8910 (4) 0.0775 (14)
H2B 0.3445 1.0095 0.8932 0.093*
C14 0.7249 (6) 0.1390 (5) 0.8336 (4) 0.0668 (12)
H14A 0.7879 0.1441 0.8926 0.080*
C16 0.5628 (6) 0.0062 (5) 0.6596 (4) 0.0753 (13)
H16A 0.5157 −0.0789 0.6006 0.090*
C3 0.0976 (8) 0.8833 (6) 0.8979 (4) 0.0811 (15)
H3B 0.0442 0.9486 0.9057 0.097*
H4A 0.508 (4) 0.381 (4) 0.495 (3) 0.062 (13)*
H4B 0.572 (6) 0.371 (5) 0.3997 (17) 0.092 (17)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl2 0.0813 (9) 0.1355 (12) 0.0620 (7) 0.0711 (9) 0.0337 (6) 0.0267 (7)
Cl1 0.0773 (9) 0.1571 (13) 0.0793 (9) 0.0818 (9) 0.0190 (7) 0.0461 (9)
O1 0.0631 (17) 0.0617 (17) 0.0604 (17) 0.0372 (14) 0.0316 (13) 0.0354 (14)
N2 0.070 (2) 0.059 (2) 0.060 (2) 0.0348 (19) 0.0336 (17) 0.0300 (17)
N3 0.062 (2) 0.058 (2) 0.0479 (19) 0.0391 (17) 0.0273 (16) 0.0249 (16)
N1 0.057 (2) 0.0536 (19) 0.058 (2) 0.0311 (17) 0.0300 (16) 0.0295 (16)
C19 0.053 (2) 0.059 (2) 0.043 (2) 0.026 (2) 0.0123 (18) 0.0201 (19)
C22 0.048 (2) 0.065 (3) 0.041 (2) 0.026 (2) 0.0137 (18) 0.0214 (19)
C18 0.044 (2) 0.048 (2) 0.046 (2) 0.0230 (18) 0.0170 (17) 0.0215 (17)
C9 0.067 (3) 0.056 (2) 0.051 (2) 0.032 (2) 0.028 (2) 0.027 (2)
C6 0.056 (3) 0.056 (2) 0.045 (2) 0.035 (2) 0.0187 (18) 0.0200 (19)
C23 0.049 (2) 0.048 (2) 0.043 (2) 0.0229 (19) 0.0135 (17) 0.0178 (18)
C11 0.046 (2) 0.051 (2) 0.040 (2) 0.0218 (19) 0.0120 (17) 0.0200 (18)
C7 0.046 (2) 0.051 (2) 0.045 (2) 0.0242 (19) 0.0168 (18) 0.0194 (18)
C20 0.046 (2) 0.066 (3) 0.051 (2) 0.031 (2) 0.0133 (19) 0.020 (2)
C12 0.047 (2) 0.046 (2) 0.049 (2) 0.0238 (19) 0.0154 (18) 0.0182 (19)
N4 0.060 (3) 0.088 (3) 0.067 (3) 0.047 (2) 0.021 (2) 0.042 (2)
C8 0.057 (2) 0.047 (2) 0.042 (2) 0.0327 (19) 0.0211 (18) 0.0192 (17)
C21 0.045 (2) 0.064 (3) 0.053 (2) 0.025 (2) 0.0189 (19) 0.019 (2)
C13 0.067 (3) 0.052 (2) 0.047 (2) 0.028 (2) 0.012 (2) 0.0184 (19)
C5 0.060 (3) 0.065 (3) 0.057 (3) 0.030 (2) 0.018 (2) 0.018 (2)
C1 0.061 (3) 0.065 (3) 0.073 (3) 0.034 (2) 0.024 (2) 0.031 (2)
C17 0.069 (3) 0.058 (3) 0.055 (3) 0.025 (2) 0.018 (2) 0.016 (2)
C15 0.109 (4) 0.071 (3) 0.087 (4) 0.064 (3) 0.056 (3) 0.046 (3)
C10 0.093 (4) 0.066 (3) 0.088 (3) 0.043 (3) 0.051 (3) 0.048 (3)
C4 0.059 (3) 0.098 (4) 0.064 (3) 0.047 (3) 0.019 (2) 0.021 (3)
C2 0.098 (4) 0.076 (3) 0.083 (3) 0.054 (3) 0.037 (3) 0.037 (3)
C14 0.085 (3) 0.078 (3) 0.067 (3) 0.053 (3) 0.032 (2) 0.039 (3)
C16 0.096 (4) 0.048 (3) 0.075 (3) 0.029 (3) 0.032 (3) 0.015 (2)
C3 0.110 (4) 0.103 (4) 0.066 (3) 0.080 (4) 0.033 (3) 0.035 (3)

Geometric parameters (Å, º)

Cl2—C21 1.724 (4) C12—C17 1.380 (5)
Cl1—C20 1.716 (4) C12—C13 1.391 (5)
O1—C7 1.254 (4) N4—H4A 0.850 (18)
N2—C9 1.309 (4) N4—H4B 0.876 (19)
N2—N1 1.409 (4) C13—C14 1.378 (5)
N3—C11 1.336 (4) C13—H13A 0.9300
N3—C18 1.424 (4) C5—C4 1.380 (5)
N3—H3A 0.8600 C5—H5A 0.9300
N1—C7 1.372 (4) C1—C2 1.374 (5)
N1—C6 1.409 (4) C1—H1A 0.9300
C19—C18 1.379 (5) C17—C16 1.365 (5)
C19—C20 1.394 (5) C17—H17A 0.9300
C19—H19A 0.9300 C15—C16 1.375 (6)
C22—C21 1.374 (5) C15—C14 1.380 (6)
C22—C23 1.398 (5) C15—H15A 0.9300
C22—H22A 0.9300 C10—H10A 0.9600
C18—C23 1.404 (5) C10—H10B 0.9600
C9—C8 1.439 (5) C10—H10C 0.9600
C9—C10 1.502 (5) C4—C3 1.357 (7)
C6—C1 1.379 (5) C4—H4C 0.9300
C6—C5 1.380 (5) C2—C3 1.378 (7)
C23—N4 1.381 (5) C2—H2B 0.9300
C11—C8 1.382 (5) C14—H14A 0.9300
C11—C12 1.482 (5) C16—H16A 0.9300
C7—C8 1.448 (5) C3—H3B 0.9300
C20—C21 1.380 (5)
C9—N2—N1 105.9 (3) C11—C8—C7 122.6 (3)
C11—N3—C18 129.7 (3) C9—C8—C7 104.5 (3)
C11—N3—H3A 115.2 C22—C21—C20 121.3 (3)
C18—N3—H3A 115.2 C22—C21—Cl2 118.2 (3)
C7—N1—C6 128.5 (3) C20—C21—Cl2 120.5 (3)
C7—N1—N2 112.0 (3) C14—C13—C12 119.9 (4)
C6—N1—N2 118.6 (3) C14—C13—H13A 120.1
C18—C19—C20 120.5 (3) C12—C13—H13A 120.1
C18—C19—H19A 119.7 C6—C5—C4 120.3 (4)
C20—C19—H19A 119.7 C6—C5—H5A 119.8
C21—C22—C23 120.2 (3) C4—C5—H5A 119.8
C21—C22—H22A 119.9 C2—C1—C6 120.1 (4)
C23—C22—H22A 119.9 C2—C1—H1A 119.9
C19—C18—C23 120.3 (3) C6—C1—H1A 119.9
C19—C18—N3 121.7 (3) C16—C17—C12 120.4 (4)
C23—C18—N3 118.0 (3) C16—C17—H17A 119.8
N2—C9—C8 112.2 (3) C12—C17—H17A 119.8
N2—C9—C10 118.4 (3) C16—C15—C14 119.1 (4)
C8—C9—C10 129.3 (3) C16—C15—H15A 120.4
C1—C6—C5 119.1 (4) C14—C15—H15A 120.4
C1—C6—N1 119.1 (4) C9—C10—H10A 109.5
C5—C6—N1 121.8 (4) C9—C10—H10B 109.5
N4—C23—C22 120.6 (3) H10A—C10—H10B 109.5
N4—C23—C18 120.7 (3) C9—C10—H10C 109.5
C22—C23—C18 118.6 (3) H10A—C10—H10C 109.5
N3—C11—C8 119.3 (3) H10B—C10—H10C 109.5
N3—C11—C12 117.7 (3) C3—C4—C5 120.2 (4)
C8—C11—C12 123.0 (3) C3—C4—H4C 119.9
O1—C7—N1 125.3 (3) C5—C4—H4C 119.9
O1—C7—C8 129.5 (3) C1—C2—C3 120.2 (5)
N1—C7—C8 105.2 (3) C1—C2—H2B 119.9
C21—C20—C19 119.0 (3) C3—C2—H2B 119.9
C21—C20—Cl1 121.7 (3) C13—C14—C15 120.5 (4)
C19—C20—Cl1 119.3 (3) C13—C14—H14A 119.8
C17—C12—C13 119.1 (3) C15—C14—H14A 119.8
C17—C12—C11 120.8 (3) C17—C16—C15 120.9 (4)
C13—C12—C11 120.0 (3) C17—C16—H16A 119.5
C23—N4—H4A 120 (3) C15—C16—H16A 119.5
C23—N4—H4B 117 (3) C4—C3—C2 120.0 (4)
H4A—N4—H4B 110 (4) C4—C3—H3B 120.0
C11—C8—C9 131.6 (3) C2—C3—H3B 120.0

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H3A···O1 0.86 2.01 2.735 (4) 141
N4—H4B···O1i 0.88 (2) 2.18 (2) 3.022 (5) 162 (4)

Symmetry code: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FY2067).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc., Perkin Trans. 2, pp. S1–S19.
  2. Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Caboni, L., Kinsella, G. K., Blanco, F., Fayne, D., Jagoe, W. N., Carr, M., Williams, D. C., Meegan, M. J. & Lloyd, D. G. (2012). J. Med. Chem 55, 1635–1644. [DOI] [PMC free article] [PubMed]
  4. Hennig, L. & Mann, G. (1988). Z. Chem. 28, 364–365.
  5. Lu, R., Xia, H., Lü, X. & Zhao, S. (2011). Acta Cryst. E67, o2701. [DOI] [PMC free article] [PubMed]
  6. Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681204086X/fy2067sup1.cif

e-68-o3148-sup1.cif (18.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681204086X/fy2067Isup2.hkl

e-68-o3148-Isup2.hkl (180.8KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681204086X/fy2067Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES