Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Oct 20;68(Pt 11):o3153–o3154. doi: 10.1107/S1600536812042602

[4-(Dimethyl­amino)­phen­yl]diphenyl­phosphine selenide

Wade L Davis a, Alfred Muller a,*
PMCID: PMC3515250  PMID: 23284470

Abstract

In the title compound, C20H20NPSe, the P atom lies in a distorted tetra­hedral environment. The Tolman cone angle is 157° indicating steric crowding at this atom. In the crystal, weak C—H⋯Se inter­actions create linked dimeric units and C—H⋯π inter­actions are also observed.

Related literature  

For investigations into the steric and electronic properties of phospho­rus containing ligands, see: Roodt et al. (2003); Otto & Roodt (2004); Muller et al. (2008); Cowley & Damasco (1971); Allen & Taylor (1982); Allen et al. (1985). For the free phosphine related to the title compound, see: Dreissig & Plieth (1972). For the oxide analogue of the title compound, see: Lynch et al. (2003). For the related phosphine selenide, see: Phasha et al. (2012). For cone angles, see: Tolman (1977); Otto (2001). For details on the conformational fit of mol­ecules using Mercury, see: Macrae et al. (2006); Weng et al. (2008a ,b ). For a description of the Cambridge Structural Database, see: Allen (2002). For background on Bent’s rule, see: Bent (1961).graphic file with name e-68-o3153-scheme1.jpg

Experimental  

Crystal data  

  • C20H20NPSe

  • M r = 384.3

  • Monoclinic, Inline graphic

  • a = 12.1757 (13) Å

  • b = 10.6173 (11) Å

  • c = 17.5211 (14) Å

  • β = 128.098 (5)°

  • V = 1782.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.20 mm−1

  • T = 100 K

  • 0.22 × 0.11 × 0.09 mm

Data collection  

  • Bruker APEX DUO 4K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.643, T max = 0.827

  • 31924 measured reflections

  • 4553 independent reflections

  • 3798 reflections with I > 2σ(I)

  • R int = 0.050

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.097

  • S = 1.06

  • 4553 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.72 e Å−3

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010) & WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812042602/yk2075sup1.cif

e-68-o3153-sup1.cif (25.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812042602/yk2075Isup2.hkl

e-68-o3153-Isup2.hkl (218.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812042602/yk2075Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 refer to the centroids of the C7–C12 and C13–C18 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20A⋯Se1i 0.98 3.25 3.833 (3) 120
C20—H20C⋯Se1ii 0.98 3.07 3.707 (3) 124
C4—H4⋯Cg1iii 0.95 2.66 3.476 (4) 145
C15—H15⋯Cg1iv 0.95 2.90 3.699 (3) 142
C19—H19BCg2v 0.98 2.79 3.627 (3) 144

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

Financial assistance from the Research Fund of the University of Johannesburg is gratefully acknowledged.

supplementary crystallographic information

Comment

Over the past few decades several experimental procedures to rapidly evaluate steric and electronic properties of phoshane ligands have been developed. Highlights from these studies include the measuring of IR stretching frequencies in complexes such as [NiP(CO)3] (Tolman, 1977), trans-[RhCl(CO)(P)2] (Roodt et al., 2003; Otto & Roodt, 2004) and by the measuring of coupling constants between 31P and other NMR active nuclei such as 11B, 195Pt or 77Se (Cowley & Damasco, 1971; Allen & Taylor, 1982; Allen et al., 1985). Recently our research into this area involved the use of seledized phosphane ligands, providing several useful probes such as 1J(31P-77Se) coupling, Se—P bond distance and kinetic reaction rates (Muller et al., 2008) to study the steric and electronic parameters of phosphorus containing ligands. Discussed here, as part of an ongoing study, is the structure of the title compound, which is the selenium derivative of the phosphane PPh2(4-NMe2—C6H4), where Ph = C6H5.

The title compound (see Fig. 1) crystallizes in the monoclinic space group, P 21/c (Z=4), with its molecules adopting a distorted tetrahedral arrangement about the phosphorus atom. The average C—P—C and Se—P—C angles are 105.28 (11)° and 113.40 (8)° respectively. The Se—P distance is 2.1069 (7) Å which is significantly shorter than the 2.1241 (5) Å reported for the analogous SePCy2(4-NMe2—C6H4) compound (Phasha et al., 2012). An increase of 26 Hz in the 1J(31P-77Se) NMR coupling is also observed for the title compound compared to the dicyclohexcyl analogue. This is in accordance with Bent's rule that the s-character of the phosphorus lone pair electrons will decrease with more electron-donating substituents (Bent, 1961).

To describe the steric demand of phosphane ligands a variety of models have been developed, of which the Tolman cone angle (Tolman, 1977) is still the most commonly used method. Applying this model to the geometry obtained for the title compound (and adjusting the Se—P bond distance to 2.28 Å) we calculated an effective cone angle from the geometry found in the crystal structure as 157° (Otto, 2001). This value is comparable to the cone angles calculated for the structure of the free (Lynch et al., 2003) and oxidized (Dreissig & Plieth, 1972) forms of the phosphane (calculated as 158° and 161° respectively). The orientation of the substituents for the oxidized derivative is comparable to that of the title compound, whereas the free phosphane shows substantial differences in its orientations. To illustrate this observation, the coordinates of P and ipso C-atoms of the three structures are superimposed using Mercury (see Fig. 2; Macrae et al., 2006; Weng et al., 2008a; Weng et al., 2008b). The reason for the different substituent orientations are possibly due to different interactions observed to the packing of these structures. It is also interesting to note that coordination of the phosphane to transition metals does not induce significant steric crowding, and hence a smaller cone angle, of the ligand at the coordination sphere. Data extracted for these coordination complexes from the Cambridge Structural Database shows an average cone angle of 159° (Allen, 2002; 9 observations with metals: Au, Pt, Pd, Rh and Cu).

Packing in the crystals is assisted by weak C—H···Se interactions creating linked dimeric units of the title compound. In addition C—H···π interactions are also observed (see table 1 and Fig. 3 for a graphical representation of the interactions).

Experimental

[4-(Dimethylamino)phenyl]diphenylphosphane and KSeCN were purchased from Sigma-Aldrich and used without purification. Eqimolar amounts of KSeCN (5.8 mg, 0.04 mmol) and the [4-(dimethylamino)phenyl]diphenylphosphane (12.2 mg, 0.04 mmol) were dissolved in the minimum amounts of methanol (10 ml). The KSeCN solution was added drop wise (5 min.) to the phosphane solution with stirring at room temperature. Slow evaporation of the solvent afforded the title compound as colourless crystals suitable for a single-crystal X-ray study. Analytical data: 31P {H} NMR (CDCl3, 161.99 MHz): δ = 33.62 (t, 1J(31P-77Se) = 713 Hz).

Refinement

The aromatic and methyl H atoms were placed in geometrically idealized positions (C—H = 0.95–0.98) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) for aromatic and Uiso(H) = 1.5Ueq(C) for methyl H atoms respectively. Methyl torsion angles were refined from electron density.

Figures

Fig. 1.

Fig. 1.

A view of the title complex, showing the atom-numbering scheme and 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Conformational similarity between the title compound (blue), the phosphine oxide (red) and the free phosphine (green). The root mean squared deviations (RMSD) to the title compound were 0.0279 Å (oxide derivative) and 0.0473 Å (free phosphine).

Fig. 3.

Fig. 3.

Packing diagram showing the C—H···Se/π interactions (indicated by dashed lines).

Crystal data

C20H20NPSe F(000) = 784
Mr = 384.3 Dx = 1.432 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 9940 reflections
a = 12.1757 (13) Å θ = 2.3–28.3°
b = 10.6173 (11) Å µ = 2.20 mm1
c = 17.5211 (14) Å T = 100 K
β = 128.098 (5)° Cuboid, colourless
V = 1782.5 (3) Å3 0.22 × 0.11 × 0.09 mm
Z = 4

Data collection

Bruker APEX DUO 4K CCD diffractometer 4553 independent reflections
Radiation source: sealed tube 3798 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.050
Detector resolution: 8.4 pixels mm-1 θmax = 28.7°, θmin = 2.1°
φ and ω scans h = −16→16
Absorption correction: multi-scan (SADABS; Bruker, 2008) k = −14→14
Tmin = 0.643, Tmax = 0.827 l = −23→23
31924 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0336P)2 + 3.5217P] where P = (Fo2 + 2Fc2)/3
4553 reflections (Δ/σ)max = 0.001
210 parameters Δρmax = 0.53 e Å3
0 restraints Δρmin = −0.72 e Å3

Special details

Experimental. The intensity data was collected on a Bruker Apex DUO 4 K CCD diffractometer using an exposure time of 20 s/frame. A total of 2352 frames were collected with a frame width of 0.5° covering up to θ = 28.66° with 99.3% completeness accomplished.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Se1 0.65445 (3) 0.81555 (3) 0.51517 (2) 0.02312 (9)
P1 0.79548 (6) 0.70500 (6) 0.51220 (4) 0.01475 (13)
N1 0.5685 (2) 0.1943 (2) 0.33365 (16) 0.0202 (4)
C1 0.8477 (2) 0.7754 (2) 0.44440 (17) 0.0158 (5)
C2 0.9861 (3) 0.7749 (3) 0.4794 (2) 0.0284 (6)
H2 1.0572 0.744 0.5427 0.034*
C3 1.0206 (3) 0.8195 (3) 0.4219 (2) 0.0354 (7)
H3 1.1152 0.8193 0.4463 0.042*
C4 0.9182 (3) 0.8642 (3) 0.3296 (2) 0.0236 (5)
H4 0.9421 0.8945 0.2906 0.028*
C5 0.7798 (3) 0.8645 (3) 0.29429 (19) 0.0222 (5)
H5 0.7089 0.894 0.2305 0.027*
C6 0.7448 (3) 0.8218 (3) 0.35178 (19) 0.0211 (5)
H6 0.6504 0.8243 0.3278 0.025*
C7 0.9584 (2) 0.6739 (2) 0.63238 (17) 0.0160 (5)
C8 1.0104 (3) 0.5520 (2) 0.66278 (18) 0.0179 (5)
H8 0.9605 0.4827 0.6205 0.021*
C9 1.1364 (3) 0.5315 (3) 0.75581 (19) 0.0229 (5)
H9 1.1713 0.4484 0.777 0.027*
C10 1.2095 (3) 0.6329 (3) 0.81646 (19) 0.0266 (6)
H10 1.2953 0.6191 0.8791 0.032*
C11 1.1586 (3) 0.7546 (3) 0.78654 (19) 0.0267 (6)
H11 1.2098 0.8235 0.8288 0.032*
C12 1.0330 (3) 0.7762 (3) 0.69497 (19) 0.0216 (5)
H12 0.9979 0.8595 0.6749 0.026*
C13 0.7256 (2) 0.5533 (2) 0.45680 (17) 0.0156 (5)
C14 0.7489 (2) 0.4999 (2) 0.39474 (17) 0.0163 (5)
H14 0.802 0.5451 0.3809 0.02*
C15 0.6959 (2) 0.3825 (2) 0.35318 (17) 0.0168 (5)
H15 0.7116 0.3495 0.3102 0.02*
C16 0.6189 (2) 0.3111 (2) 0.37367 (17) 0.0167 (5)
C17 0.5955 (2) 0.3657 (2) 0.43629 (17) 0.0179 (5)
H17 0.5443 0.3202 0.4517 0.022*
C18 0.6462 (2) 0.4845 (2) 0.47526 (17) 0.0168 (5)
H18 0.6267 0.5201 0.5155 0.02*
C19 0.6003 (3) 0.1393 (3) 0.2728 (2) 0.0234 (5)
H19A 0.5672 0.1957 0.2182 0.035*
H19B 0.5536 0.0575 0.2482 0.035*
H19C 0.7013 0.1278 0.3113 0.035*
C20 0.5016 (3) 0.1166 (3) 0.3625 (2) 0.0278 (6)
H20A 0.5668 0.1017 0.4326 0.042*
H20B 0.4743 0.0359 0.3282 0.042*
H20C 0.4184 0.1599 0.3463 0.042*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Se1 0.02080 (14) 0.02423 (15) 0.02604 (15) 0.00213 (10) 0.01530 (12) −0.00154 (11)
P1 0.0118 (3) 0.0177 (3) 0.0128 (3) −0.0002 (2) 0.0066 (2) 0.0010 (2)
N1 0.0205 (10) 0.0189 (11) 0.0198 (11) −0.0039 (8) 0.0116 (9) −0.0033 (8)
C1 0.0143 (11) 0.0166 (11) 0.0149 (11) 0.0002 (9) 0.0081 (9) −0.0001 (9)
C2 0.0152 (12) 0.0482 (18) 0.0205 (13) 0.0057 (12) 0.0103 (11) 0.0125 (12)
C3 0.0191 (13) 0.060 (2) 0.0305 (16) 0.0037 (14) 0.0173 (13) 0.0129 (15)
C4 0.0248 (13) 0.0277 (14) 0.0226 (13) 0.0009 (11) 0.0168 (12) 0.0028 (11)
C5 0.0216 (12) 0.0262 (13) 0.0161 (12) 0.0016 (10) 0.0102 (11) 0.0051 (10)
C6 0.0138 (11) 0.0274 (13) 0.0186 (12) −0.0003 (10) 0.0082 (10) 0.0033 (10)
C7 0.0135 (10) 0.0210 (12) 0.0130 (11) −0.0011 (9) 0.0078 (9) 0.0007 (9)
C8 0.0152 (11) 0.0237 (12) 0.0154 (11) 0.0014 (9) 0.0098 (10) 0.0027 (9)
C9 0.0179 (12) 0.0332 (15) 0.0192 (13) 0.0073 (10) 0.0122 (11) 0.0094 (11)
C10 0.0144 (12) 0.0492 (18) 0.0126 (12) 0.0013 (11) 0.0065 (10) 0.0035 (11)
C11 0.0200 (13) 0.0401 (17) 0.0159 (12) −0.0093 (12) 0.0091 (11) −0.0090 (11)
C12 0.0202 (12) 0.0248 (13) 0.0196 (13) −0.0038 (10) 0.0121 (11) −0.0028 (10)
C13 0.0096 (10) 0.0197 (11) 0.0124 (11) 0.0007 (9) 0.0043 (9) 0.0013 (9)
C14 0.0122 (10) 0.0192 (12) 0.0144 (11) 0.0005 (9) 0.0067 (9) 0.0010 (9)
C15 0.0138 (11) 0.0206 (12) 0.0142 (11) 0.0019 (9) 0.0077 (9) −0.0003 (9)
C16 0.0114 (10) 0.0183 (11) 0.0126 (11) 0.0007 (9) 0.0035 (9) 0.0004 (9)
C17 0.0149 (11) 0.0221 (12) 0.0149 (11) −0.0033 (9) 0.0082 (10) 0.0004 (9)
C18 0.0142 (11) 0.0223 (12) 0.0119 (11) −0.0003 (9) 0.0071 (9) 0.0007 (9)
C19 0.0197 (12) 0.0226 (13) 0.0239 (13) −0.0016 (10) 0.0114 (11) −0.0058 (10)
C20 0.0345 (15) 0.0219 (13) 0.0248 (14) −0.0096 (11) 0.0172 (13) −0.0030 (11)

Geometric parameters (Å, º)

Se1—P1 2.1069 (7) C9—H9 0.95
P1—C13 1.800 (3) C10—C11 1.388 (4)
P1—C1 1.818 (3) C10—H10 0.95
P1—C7 1.823 (2) C11—C12 1.392 (4)
N1—C16 1.369 (3) C11—H11 0.95
N1—C20 1.452 (3) C12—H12 0.95
N1—C19 1.461 (3) C13—C18 1.399 (3)
C1—C6 1.392 (3) C13—C14 1.402 (3)
C1—C2 1.394 (3) C14—C15 1.386 (3)
C2—C3 1.391 (4) C14—H14 0.95
C2—H2 0.95 C15—C16 1.414 (3)
C3—C4 1.380 (4) C15—H15 0.95
C3—H3 0.95 C16—C17 1.417 (4)
C4—C5 1.390 (4) C17—C18 1.385 (3)
C4—H4 0.95 C17—H17 0.95
C5—C6 1.390 (4) C18—H18 0.95
C5—H5 0.95 C19—H19A 0.98
C6—H6 0.95 C19—H19B 0.98
C7—C8 1.394 (3) C19—H19C 0.98
C7—C12 1.406 (4) C20—H20A 0.98
C8—C9 1.404 (3) C20—H20B 0.98
C8—H8 0.95 C20—H20C 0.98
C9—C10 1.383 (4)
C13—P1—C1 104.77 (11) C11—C10—H10 119.7
C13—P1—C7 106.04 (11) C10—C11—C12 120.4 (3)
C1—P1—C7 105.02 (11) C10—C11—H11 119.8
C13—P1—Se1 112.98 (8) C12—C11—H11 119.8
C1—P1—Se1 113.96 (8) C11—C12—C7 119.5 (3)
C7—P1—Se1 113.26 (8) C11—C12—H12 120.2
C16—N1—C20 120.4 (2) C7—C12—H12 120.2
C16—N1—C19 119.9 (2) C18—C13—C14 117.8 (2)
C20—N1—C19 119.0 (2) C18—C13—P1 120.45 (19)
C6—C1—C2 119.2 (2) C14—C13—P1 121.71 (18)
C6—C1—P1 118.79 (18) C15—C14—C13 121.4 (2)
C2—C1—P1 121.80 (19) C15—C14—H14 119.3
C3—C2—C1 120.2 (3) C13—C14—H14 119.3
C3—C2—H2 119.9 C14—C15—C16 121.0 (2)
C1—C2—H2 119.9 C14—C15—H15 119.5
C4—C3—C2 120.5 (3) C16—C15—H15 119.5
C4—C3—H3 119.8 N1—C16—C15 120.9 (2)
C2—C3—H3 119.8 N1—C16—C17 121.7 (2)
C3—C4—C5 119.5 (3) C15—C16—C17 117.3 (2)
C3—C4—H4 120.2 C18—C17—C16 120.8 (2)
C5—C4—H4 120.2 C18—C17—H17 119.6
C6—C5—C4 120.4 (2) C16—C17—H17 119.6
C6—C5—H5 119.8 C17—C18—C13 121.6 (2)
C4—C5—H5 119.8 C17—C18—H18 119.2
C5—C6—C1 120.2 (2) C13—C18—H18 119.2
C5—C6—H6 119.9 N1—C19—H19A 109.5
C1—C6—H6 119.9 N1—C19—H19B 109.5
C8—C7—C12 119.8 (2) H19A—C19—H19B 109.5
C8—C7—P1 121.55 (19) N1—C19—H19C 109.5
C12—C7—P1 118.67 (19) H19A—C19—H19C 109.5
C7—C8—C9 120.0 (2) H19B—C19—H19C 109.5
C7—C8—H8 120 N1—C20—H20A 109.5
C9—C8—H8 120 N1—C20—H20B 109.5
C10—C9—C8 119.7 (3) H20A—C20—H20B 109.5
C10—C9—H9 120.1 N1—C20—H20C 109.5
C8—C9—H9 120.1 H20A—C20—H20C 109.5
C9—C10—C11 120.6 (2) H20B—C20—H20C 109.5
C9—C10—H10 119.7
C13—P1—C1—C6 74.9 (2) C9—C10—C11—C12 0.1 (4)
C7—P1—C1—C6 −173.6 (2) C10—C11—C12—C7 −0.6 (4)
Se1—P1—C1—C6 −49.0 (2) C8—C7—C12—C11 0.4 (4)
C13—P1—C1—C2 −99.9 (2) P1—C7—C12—C11 −179.1 (2)
C7—P1—C1—C2 11.6 (3) C1—P1—C13—C18 −165.27 (19)
Se1—P1—C1—C2 136.2 (2) C7—P1—C13—C18 84.0 (2)
C6—C1—C2—C3 −0.5 (5) Se1—P1—C13—C18 −40.7 (2)
P1—C1—C2—C3 174.3 (3) C1—P1—C13—C14 15.1 (2)
C1—C2—C3—C4 −0.3 (5) C7—P1—C13—C14 −95.7 (2)
C2—C3—C4—C5 0.1 (5) Se1—P1—C13—C14 139.70 (18)
C3—C4—C5—C6 0.9 (4) C18—C13—C14—C15 −0.3 (3)
C4—C5—C6—C1 −1.7 (4) P1—C13—C14—C15 179.32 (18)
C2—C1—C6—C5 1.4 (4) C13—C14—C15—C16 −1.4 (4)
P1—C1—C6—C5 −173.5 (2) C20—N1—C16—C15 173.9 (2)
C13—P1—C7—C8 3.9 (2) C19—N1—C16—C15 3.2 (3)
C1—P1—C7—C8 −106.7 (2) C20—N1—C16—C17 −6.6 (4)
Se1—P1—C7—C8 128.35 (19) C19—N1—C16—C17 −177.3 (2)
C13—P1—C7—C12 −176.58 (19) C14—C15—C16—N1 −179.0 (2)
C1—P1—C7—C12 72.8 (2) C14—C15—C16—C17 1.5 (3)
Se1—P1—C7—C12 −52.1 (2) N1—C16—C17—C18 −179.4 (2)
C12—C7—C8—C9 0.4 (4) C15—C16—C17—C18 0.1 (3)
P1—C7—C8—C9 179.88 (19) C16—C17—C18—C13 −1.9 (4)
C7—C8—C9—C10 −0.9 (4) C14—C13—C18—C17 2.0 (3)
C8—C9—C10—C11 0.7 (4) P1—C13—C18—C17 −177.68 (18)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 refer to the centroids of the C7–C12 and C13–C18 rings, respectively.

D—H···A D—H H···A D···A D—H···A
C20—H20A···Se1i 0.98 3.25 3.833 (3) 120
C20—H20C···Se1ii 0.98 3.07 3.707 (3) 124
C4—H4···Cg1iii 0.95 2.66 3.476 (4) 145
C15—H15···Cg1iv 0.95 2.90 3.699 (3) 142
C19—H19B···Cg2v 0.98 2.79 3.627 (3) 144

Symmetry codes: (i) x, y−1, z; (ii) −x+1, −y+1, −z+1; (iii) x, −y−1/2, z−1/2; (iv) −x, −y, −z; (v) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YK2075).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Allen, D. W., Nowel, I. W. & Taylor, B. F. (1985). J. Chem. Soc. Dalton Trans. pp. 2505–2508.
  3. Allen, D. W. & Taylor, B. F. (1982). J. Chem. Soc. Dalton Trans. pp. 51–54.
  4. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  5. Bent, H. A. (1961). Chem. Rev. 61, 275–311.
  6. Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  7. Bruker (2008). SADABS, SAINT and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  8. Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
  9. Cowley, A. H. & Damasco, M. C. (1971). J. Am. Chem. Soc. 93, 6815–6821.
  10. Dreissig, W. & Plieth, K. (1972). Z. Kristallogr. 135, 294–307.
  11. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  12. Lynch, D. E., Smith, G., Byriel, K. A. & Kennard, C. H. L. (2003). Aust. J. Chem. 56, 1135–1139.
  13. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  14. Muller, A., Otto, S. & Roodt, A. (2008). Dalton Trans. pp. 650–657. [DOI] [PubMed]
  15. Otto, S. (2001). Acta Cryst. C57, 793–795. [DOI] [PubMed]
  16. Otto, S. & Roodt, A. (2004). Inorg. Chim. Acta, 357, 1–10.
  17. Phasha, Z. H., Makhoba, S. & Muller, A. (2012). Acta Cryst. E68, o243. [DOI] [PMC free article] [PubMed]
  18. Roodt, A., Otto, S. & Steyl, G. (2003). Coord. Chem. Rev. 245, 121–137.
  19. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  20. Tolman, C. A. (1977). Chem. Rev. 77, 313–348.
  21. Weng, Z. F., Motherwell, W. D. S., Allen, F. H. & Cole, J. M. (2008a). Acta Cryst. B64, 348–362. [DOI] [PubMed]
  22. Weng, Z. F., Motherwell, W. D. S. & Cole, J. M. (2008b). J. Appl. Cryst. 41, 955–957.
  23. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812042602/yk2075sup1.cif

e-68-o3153-sup1.cif (25.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812042602/yk2075Isup2.hkl

e-68-o3153-Isup2.hkl (218.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812042602/yk2075Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES