Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Oct 20;68(Pt 11):o3163. doi: 10.1107/S1600536812042316

3-Meth­oxy-2-[2-({[6-(trifluoro­meth­yl)pyridin-2-yl]­oxy}meth­yl)phen­yl]prop-2-enoic acid

Rajni Kant a,*, Vivek K Gupta a, Kamini Kapoor a, Chetan S Shripanavar b, Madhukar B Deshmukh c, Kaushik Banerjee b
PMCID: PMC3515258  PMID: 23284478

Abstract

The title mol­ecule, C17H14F3NO4, consists of two nearly planar fragments, viz. the 2-benzyl­oxypyridine (r.m.s. deviation 0.016 Å) and (E)-3-meth­oxy­prop2-enoic (r.m.s. deviation 0.004 Å) units, which form a dihedral angle of 84.19 (7)°. In the crystal, pairs of O—H⋯O hydrogen bonds link mol­ecules into dimers that are further connected by C—H⋯O and C—H⋯F inter­actions into (001) layers. In addition, π–π stacking inter­actions are observed within a layer between the pyridine and benzene rings [centroid–centroid distance = 3.768 (2) Å]. The F atoms of the trifluoro­methyl group are disordered over two sets of sites in a 0.53 (4):0.47 (4) ratio.

Related literature  

The title compound is the acid metabolite of picoxystrobin [systematic name: methyl (E)-3-meth­oxy-2-{2-[6-(trifluoro­meth­yl)-2-pyridyl­oxymeth­yl]phen­yl}acrylate], a systemic fungicide with broad-spectrum bio-efficacy against various diseases of agricultural crops, see: Balba (2007); Ammermann et al. (2000). For a related structure, see: Kant et al. (2012).graphic file with name e-68-o3163-scheme1.jpg

Experimental  

Crystal data  

  • C17H14F3NO4

  • M r = 353.29

  • Triclinic, Inline graphic

  • a = 7.4701 (4) Å

  • b = 10.1619 (5) Å

  • c = 11.8219 (5) Å

  • α = 94.721 (4)°

  • β = 100.079 (4)°

  • γ = 110.685 (5)°

  • V = 816.42 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.2 mm

Data collection  

  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) T min = 0.821, T max = 1.000

  • 19533 measured reflections

  • 3214 independent reflections

  • 1988 reflections with I > 2σ(I)

  • R int = 0.057

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.154

  • S = 1.04

  • 3214 reflections

  • 253 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536812042316/gk2523sup1.cif

e-68-o3163-sup1.cif (25.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812042316/gk2523Isup2.hkl

e-68-o3163-Isup2.hkl (154.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812042316/gk2523Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H41⋯O3i 0.85 (4) 1.78 (4) 2.626 (3) 174 (4)
C15—H15⋯O3ii 0.93 2.58 3.392 (3) 146
C17—H17A⋯F11A iii 0.96 2.41 3.135 (14) 132

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

RK acknowledges the Department of Science & Technology for access to the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003.

supplementary crystallographic information

Comment

The above compound is the acid metabolite of picoxystrobin, which is a systemic fungicide of strobilurin group with broad spectrum bio-efficacy against various diseases of economically important agricultural crops (Balba, 2007; Ammermann et al., 2000).

In (I) (Fig.1), all bond lengths and angles are normal and correspond to those observed in the related structure (Kant et al., 2012). The dihedral angle between the two aromatic rings is 1.93 (9)°. The propenoic acid fragment is nearly perpendicular to the attached benzene ring [dihedral angle 82.6 (1)°]. The two nearly planar fragments, 2-(benzyloxy)-3-(trifluoromethyl)pyridine unit (r.m.s. deviation 0.016Å) and (E)-3-methoxyprop2-enoic unit (r.m.s. deviation 0.004Å) form dihedral angle of 84.19 (7)°. The F atoms of the trifluoromethyl group were refined as disordered over two sets of sites with occupancies of 0.53 (4)/0.47 (4). In the crystal, O—H···O hydrogen bonds link molecules to form dimers (Table 1). Dimers are further connected by C—H···O and C—H···F hydrogen bonds into (001) layers (Fig. 2). The crystal structure is further stabilized by π–π interactions between the pyridine ring (C11—C15/N1) of the molecule at (x, y, z) and the benzene ring of an inversion related molecule at(1 - x, 1 - y, - z) [centroid separation = 3.768 (2) Å, interplanar spacing = 3.437 Å and centroid shift = 1.54 Å].

Experimental

Picoxystrobin (0.353 g, 0.001 mol) was dissolved in 5 ml of acetone and to it 5 ml of 1 N NaOH solution was added. The reaction mixture was refluxed at 343 K for 6 h, and then cooled. The compound was precipitated by neutralizing with 1 N HCl solution. The precipitated compound was dissolved in methanol and crystallized by the process of slow evaporation.(m.p. 415 K).

Refinement

H atom bonded to O atom was located in a difference map and refined freely. Other H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). In the refinement process restraints were imposed on C-F distances of the disordered molecular fragments.

Figures

Fig. 1.

Fig. 1.

ORTEP view of the molecule with the atom-labeling scheme. The thermal ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

The packing arrangement of molecules viewed down the a axis. The dotted lines show intermolecular C—H···O, O—H···O and C—H···F hydrogen bonds.

Crystal data

C17H14F3NO4 Z = 2
Mr = 353.29 F(000) = 364
Triclinic, P1 Dx = 1.437 Mg m3
Hall symbol: -P 1 Melting point: 415 K
a = 7.4701 (4) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.1619 (5) Å Cell parameters from 7723 reflections
c = 11.8219 (5) Å θ = 3.5–29.0°
α = 94.721 (4)° µ = 0.13 mm1
β = 100.079 (4)° T = 293 K
γ = 110.685 (5)° Plate, colourless
V = 816.42 (7) Å3 0.3 × 0.2 × 0.2 mm

Data collection

Oxford Diffraction Xcalibur Sapphire3 diffractometer 3214 independent reflections
Radiation source: fine-focus sealed tube 1988 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.057
Detector resolution: 16.1049 pixels mm-1 θmax = 26.0°, θmin = 3.5°
ω scan h = −9→9
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) k = −12→12
Tmin = 0.821, Tmax = 1.000 l = −14→14
19533 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0666P)2 + 0.1912P] where P = (Fo2 + 2Fc2)/3
3214 reflections (Δ/σ)max < 0.001
253 parameters Δρmax = 0.24 e Å3
6 restraints Δρmin = −0.40 e Å3

Special details

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.3119 (3) 0.52862 (18) 0.05675 (15) 0.0505 (5)
N1 0.5088 (3) 0.6809 (2) 0.22310 (18) 0.0441 (5)
O2 0.5218 (3) 0.88494 (19) −0.22824 (18) 0.0579 (6)
O3 −0.0083 (3) 0.84278 (19) −0.05459 (18) 0.0578 (6)
O4 0.2235 (3) 1.05406 (19) −0.05040 (19) 0.0580 (6)
C1 0.1465 (4) 0.9160 (3) −0.0804 (2) 0.0403 (6)
C2 0.2512 (4) 0.8515 (2) −0.1454 (2) 0.0369 (6)
C3 0.4172 (4) 0.9358 (3) −0.1689 (2) 0.0437 (6)
H3 0.4622 1.0333 −0.1434 0.052*
C4 0.1601 (3) 0.6946 (2) −0.1883 (2) 0.0358 (6)
C5 0.1822 (3) 0.5959 (2) −0.1174 (2) 0.0371 (6)
C6 0.0916 (4) 0.4512 (3) −0.1611 (2) 0.0436 (6)
H6 0.1052 0.3847 −0.1142 0.052*
C7 −0.0180 (4) 0.4060 (3) −0.2733 (2) 0.0502 (7)
H7 −0.0781 0.3090 −0.3016 0.060*
C8 −0.0393 (4) 0.5030 (3) −0.3437 (2) 0.0529 (7)
H8 −0.1136 0.4720 −0.4194 0.063*
C9 0.0500 (4) 0.6462 (3) −0.3013 (2) 0.0477 (7)
H9 0.0363 0.7118 −0.3492 0.057*
C10 0.3053 (4) 0.6487 (3) 0.0043 (2) 0.0434 (6)
H10A 0.4369 0.7114 0.0023 0.052*
H10B 0.2486 0.7015 0.0491 0.052*
C11 0.4141 (4) 0.5507 (3) 0.1669 (2) 0.0402 (6)
C12 0.6087 (4) 0.6917 (3) 0.3322 (2) 0.0492 (7)
C13 0.6148 (4) 0.5784 (3) 0.3857 (2) 0.0521 (7)
H13 0.6848 0.5918 0.4617 0.062*
C14 0.5133 (4) 0.4432 (3) 0.3227 (2) 0.0519 (7)
H14 0.5142 0.3634 0.3558 0.062*
C15 0.4128 (4) 0.4282 (3) 0.2127 (2) 0.0484 (7)
H15 0.3444 0.3384 0.1685 0.058*
C16 0.7204 (6) 0.8399 (4) 0.3923 (3) 0.0835 (12)
C17 0.6970 (5) 0.9862 (3) −0.2501 (3) 0.0698 (9)
H17A 0.6635 1.0336 −0.3127 0.105*
H17B 0.7790 0.9378 −0.2709 0.105*
H17C 0.7662 1.0551 −0.1813 0.105*
F111 0.591 (3) 0.888 (3) 0.429 (2) 0.173 (7) 0.47 (4)
F222 0.854 (19) 0.914 (18) 0.334 (12) 0.145 (5) 0.47 (4)
F333 0.848 (3) 0.846 (2) 0.4878 (15) 0.115 (6) 0.47 (4)
F11A 0.6329 (17) 0.9292 (9) 0.3891 (12) 0.105 (4) 0.53 (4)
F22A 0.845 (17) 0.916 (16) 0.331 (11) 0.145 (5) 0.53 (4)
F33A 0.806 (3) 0.847 (2) 0.5018 (9) 0.109 (5) 0.53 (4)
H41 0.160 (6) 1.088 (4) −0.012 (3) 0.101 (13)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0606 (12) 0.0338 (10) 0.0482 (11) 0.0123 (9) 0.0007 (9) 0.0076 (8)
N1 0.0467 (13) 0.0386 (12) 0.0423 (13) 0.0132 (10) 0.0035 (10) 0.0059 (10)
O2 0.0551 (12) 0.0447 (11) 0.0786 (14) 0.0159 (10) 0.0339 (11) 0.0074 (10)
O3 0.0480 (12) 0.0373 (10) 0.0867 (15) 0.0104 (9) 0.0282 (11) −0.0015 (10)
O4 0.0540 (13) 0.0321 (10) 0.0882 (16) 0.0125 (9) 0.0301 (11) −0.0030 (10)
C1 0.0405 (15) 0.0310 (13) 0.0460 (15) 0.0121 (12) 0.0054 (12) 0.0020 (11)
C2 0.0397 (14) 0.0312 (13) 0.0407 (14) 0.0141 (12) 0.0089 (11) 0.0069 (11)
C3 0.0494 (16) 0.0353 (14) 0.0505 (16) 0.0192 (13) 0.0141 (13) 0.0072 (12)
C4 0.0308 (13) 0.0357 (13) 0.0418 (14) 0.0132 (11) 0.0108 (11) 0.0020 (11)
C5 0.0354 (14) 0.0349 (14) 0.0404 (14) 0.0113 (11) 0.0124 (11) 0.0030 (11)
C6 0.0437 (15) 0.0334 (14) 0.0502 (16) 0.0090 (12) 0.0133 (13) 0.0063 (12)
C7 0.0482 (17) 0.0356 (15) 0.0546 (18) 0.0044 (13) 0.0108 (13) −0.0078 (13)
C8 0.0487 (17) 0.0549 (18) 0.0455 (16) 0.0164 (14) −0.0004 (13) −0.0070 (14)
C9 0.0508 (17) 0.0488 (16) 0.0450 (16) 0.0235 (14) 0.0052 (13) 0.0059 (13)
C10 0.0475 (16) 0.0315 (13) 0.0454 (15) 0.0088 (12) 0.0079 (12) 0.0068 (11)
C11 0.0397 (15) 0.0384 (14) 0.0426 (15) 0.0132 (12) 0.0111 (12) 0.0098 (12)
C12 0.0532 (17) 0.0442 (16) 0.0490 (17) 0.0199 (14) 0.0048 (13) 0.0062 (13)
C13 0.0547 (18) 0.0600 (19) 0.0454 (16) 0.0266 (15) 0.0069 (13) 0.0147 (14)
C14 0.0585 (18) 0.0467 (17) 0.0587 (19) 0.0244 (15) 0.0173 (15) 0.0213 (14)
C15 0.0537 (17) 0.0372 (15) 0.0540 (18) 0.0161 (13) 0.0123 (14) 0.0086 (12)
C16 0.104 (3) 0.058 (2) 0.061 (2) 0.014 (2) −0.017 (2) 0.0047 (18)
C17 0.059 (2) 0.068 (2) 0.086 (2) 0.0171 (17) 0.0335 (18) 0.0197 (18)
F111 0.267 (14) 0.108 (10) 0.142 (12) 0.136 (10) −0.061 (8) −0.060 (8)
F222 0.162 (8) 0.077 (4) 0.114 (6) −0.033 (5) −0.012 (6) 0.011 (3)
F333 0.121 (8) 0.060 (6) 0.101 (9) 0.002 (5) −0.067 (8) 0.006 (7)
F11A 0.144 (7) 0.039 (3) 0.111 (6) 0.042 (5) −0.035 (4) −0.007 (3)
F22A 0.162 (8) 0.077 (4) 0.114 (6) −0.033 (5) −0.012 (6) 0.011 (3)
F33A 0.166 (11) 0.090 (7) 0.046 (4) 0.043 (7) −0.021 (5) −0.009 (4)

Geometric parameters (Å, º)

O1—C11 1.346 (3) C8—H8 0.9300
O1—C10 1.425 (3) C9—H9 0.9300
N1—C11 1.313 (3) C10—H10A 0.9700
N1—C12 1.347 (3) C10—H10B 0.9700
O2—C3 1.336 (3) C11—C15 1.396 (3)
O2—C17 1.432 (3) C12—C13 1.370 (4)
O3—C1 1.240 (3) C12—C16 1.482 (4)
O4—C1 1.304 (3) C13—C14 1.384 (4)
O4—H41 0.85 (4) C13—H13 0.9300
C1—C2 1.457 (3) C14—C15 1.350 (4)
C2—C3 1.326 (3) C14—H14 0.9300
C2—C4 1.497 (3) C15—H15 0.9300
C3—H3 0.9300 C16—F11A 1.291 (7)
C4—C9 1.387 (3) C16—F33A 1.324 (8)
C4—C5 1.394 (3) C16—F333 1.326 (9)
C5—C6 1.392 (3) C16—F111 1.346 (10)
C5—C10 1.505 (3) C16—F222 1.350 (10)
C6—C7 1.376 (4) C16—F22A 1.350 (9)
C6—H6 0.9300 C17—H17A 0.9600
C7—C8 1.375 (4) C17—H17B 0.9600
C7—H7 0.9300 C17—H17C 0.9600
C8—C9 1.375 (4)
C11—O1—C10 118.71 (19) O1—C10—H10A 110.0
C11—N1—C12 115.5 (2) C5—C10—H10A 110.0
C3—O2—C17 117.1 (2) O1—C10—H10B 110.0
C1—O4—H41 115 (3) C5—C10—H10B 110.0
O3—C1—O4 121.7 (2) H10A—C10—H10B 108.4
O3—C1—C2 121.4 (2) N1—C11—O1 120.1 (2)
O4—C1—C2 116.9 (2) N1—C11—C15 124.4 (2)
C3—C2—C1 118.3 (2) O1—C11—C15 115.5 (2)
C3—C2—C4 123.2 (2) N1—C12—C13 124.6 (3)
C1—C2—C4 118.4 (2) N1—C12—C16 114.5 (2)
C2—C3—O2 122.0 (2) C13—C12—C16 120.9 (3)
C2—C3—H3 119.0 C12—C13—C14 117.7 (3)
O2—C3—H3 119.0 C12—C13—H13 121.1
C9—C4—C5 119.2 (2) C14—C13—H13 121.1
C9—C4—C2 119.2 (2) C15—C14—C13 119.3 (3)
C5—C4—C2 121.6 (2) C15—C14—H14 120.3
C6—C5—C4 119.3 (2) C13—C14—H14 120.3
C6—C5—C10 121.6 (2) C14—C15—C11 118.4 (3)
C4—C5—C10 119.1 (2) C14—C15—H15 120.8
C7—C6—C5 120.4 (2) C11—C15—H15 120.8
C7—C6—H6 119.8 F11A—C16—C12 118.5 (5)
C5—C6—H6 119.8 F33A—C16—C12 113.2 (9)
C8—C7—C6 120.5 (2) F333—C16—C12 112.1 (9)
C8—C7—H7 119.8 F111—C16—C12 106.9 (10)
C6—C7—H7 119.8 F222—C16—C12 112 (8)
C7—C8—C9 119.5 (3) F22A—C16—C12 112 (7)
C7—C8—H8 120.2 O2—C17—H17A 109.5
C9—C8—H8 120.2 O2—C17—H17B 109.5
C8—C9—C4 121.1 (3) H17A—C17—H17B 109.5
C8—C9—H9 119.4 O2—C17—H17C 109.5
C4—C9—H9 119.4 H17A—C17—H17C 109.5
O1—C10—C5 108.36 (19) H17B—C17—H17C 109.5
O3—C1—C2—C3 −179.2 (2) C12—N1—C11—O1 −179.1 (2)
O4—C1—C2—C3 0.5 (4) C12—N1—C11—C15 −0.2 (4)
O3—C1—C2—C4 4.4 (4) C10—O1—C11—N1 −1.5 (3)
O4—C1—C2—C4 −175.9 (2) C10—O1—C11—C15 179.5 (2)
C1—C2—C3—O2 −179.9 (2) C11—N1—C12—C13 −0.6 (4)
C4—C2—C3—O2 −3.7 (4) C11—N1—C12—C16 177.8 (3)
C17—O2—C3—C2 179.1 (2) N1—C12—C13—C14 0.9 (4)
C3—C2—C4—C9 −80.6 (3) C16—C12—C13—C14 −177.4 (3)
C1—C2—C4—C9 95.6 (3) C12—C13—C14—C15 −0.3 (4)
C3—C2—C4—C5 99.8 (3) C13—C14—C15—C11 −0.5 (4)
C1—C2—C4—C5 −84.0 (3) N1—C11—C15—C14 0.8 (4)
C9—C4—C5—C6 −0.7 (3) O1—C11—C15—C14 179.7 (2)
C2—C4—C5—C6 178.9 (2) N1—C12—C16—F11A 47.7 (9)
C9—C4—C5—C10 178.7 (2) C13—C12—C16—F11A −133.9 (8)
C2—C4—C5—C10 −1.7 (3) N1—C12—C16—F33A 175.8 (12)
C4—C5—C6—C7 0.3 (4) C13—C12—C16—F33A −5.8 (13)
C10—C5—C6—C7 −179.1 (2) N1—C12—C16—F333 −166.4 (15)
C5—C6—C7—C8 0.1 (4) C13—C12—C16—F333 12.1 (16)
C6—C7—C8—C9 0.1 (4) N1—C12—C16—F111 78.5 (15)
C7—C8—C9—C4 −0.5 (4) C13—C12—C16—F111 −103.0 (16)
C5—C4—C9—C8 0.8 (4) N1—C12—C16—F222 −60 (8)
C2—C4—C9—C8 −178.8 (2) C13—C12—C16—F222 119 (9)
C11—O1—C10—C5 −179.7 (2) N1—C12—C16—F22A −56 (8)
C6—C5—C10—O1 1.9 (3) C13—C12—C16—F22A 123 (8)
C4—C5—C10—O1 −177.5 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O4—H41···O3i 0.85 (4) 1.78 (4) 2.626 (3) 174 (4)
C15—H15···O3ii 0.93 2.58 3.392 (3) 146
C17—H17A···F11Aiii 0.96 2.41 3.135 (14) 132

Symmetry codes: (i) −x, −y+2, −z; (ii) −x, −y+1, −z; (iii) −x+1, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2523).

References

  1. Ammermann, E., Lorenz, G., Schelberger, K., Mueller, B., Kirstgen, R. & Sauter, H. (2000). Proceedings of the BCPC Conference –Pest and Diseases, 2, 541–548.
  2. Balba, H. (2007). J. Environ. Sci. Health Part B, 42, 441–451. [DOI] [PubMed]
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Kant, R., Gupta, V. K., Kapoor, K., Shripanavar, C. S. & Banerjee, K. (2012). Acta Cryst. E68, o2425. [DOI] [PMC free article] [PubMed]
  5. Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536812042316/gk2523sup1.cif

e-68-o3163-sup1.cif (25.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812042316/gk2523Isup2.hkl

e-68-o3163-Isup2.hkl (154.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812042316/gk2523Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES