Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Oct 20;68(Pt 11):o3166. doi: 10.1107/S1600536812042778

3-{[1-(2,3,5-Tri-O-benzoyl-β-d-ribofur­an­os-1-yl)-1H-1,2,3-triazol-4-yl]meth­yl}quin­a­zolin-4(3H)-one

Abdelaaziz Ouahrouch a, Moha Taourirte a, Mohamed El Azhari b, Mohamed Saadi c, Lahcen El Ammari c,*
PMCID: PMC3515260  PMID: 23284480

Abstract

In the compound, C37H29N5O8, the quinazoline residue forms a dihedral angle of 72.90 (9)° with the triazole ring. The furan ring adopts a twist conformation. In the crystal, the mol­ecules are linked by non-classical C—H⋯N and C—H⋯O hydrogen bonds, building an infinite three-dimensional network.

Related literature  

For details of the synthesis, see: Ines et al. (2008); Krim et al. (2009); Huisgen (1963), Wu et al. (2004). For background to the biological activity of quinazolines, see: Traxler (1998); Bridges (2001); Wakeling (2005); Diana & Nitz (1993); Chen et al. (2000); Manfredini et al. (2000). For conformational analysis, see: Cremer & Pople (1975).graphic file with name e-68-o3166-scheme1.jpg

Experimental  

Crystal data  

  • C37H29N5O8

  • M r = 671.65

  • Monoclinic, Inline graphic

  • a = 11.2646 (2) Å

  • b = 5.6471 (1) Å

  • c = 25.7507 (4) Å

  • β = 99.595 (1)°

  • V = 1615.15 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.33 × 0.29 × 0.25 mm

Data collection  

  • Bruker X8 APEXII diffractometer

  • 26180 measured reflections

  • 4490 independent reflections

  • 3651 reflections with I > 2σ(I)

  • R int = 0.029

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.081

  • S = 1.03

  • 4490 reflections

  • 451 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia,1997); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812042778/bt6845sup1.cif

e-68-o3166-sup1.cif (39.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812042778/bt6845Isup2.hkl

e-68-o3166-Isup2.hkl (215.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O6i 0.93 2.57 3.483 (3) 168
C13—H13⋯O6ii 0.98 2.36 3.293 (3) 159
C6—H6⋯N1iii 0.93 2.62 3.390 (3) 141

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

supplementary crystallographic information

Comment

Quinazoline and its derivatives are an interesting class of heterocyclic compounds that have drawn much attention because of their biological and pharmaceutical activities including a wide range of antitumor activity (Traxler, 1998; Bridges, 2001; Wakeling, 2005). Furthermore, triazole heterocycles are potent antiviral (Diana & Nitz, 1993), antimicrobial (Chen et al., 2000), and anti-proliferate agents (Manfredini et al., 2000). The pharmaceutical importance of triazoles has prompted the design and synthesis of various triazolonucleosides.

The most interesting method for the synthesis of triazoles is the Huisgen 1,3-dipolar cycloaddition of organic azides with alkynes (Huisgen, 1963). Copper-catalyzed click chemistry is an efficient method that uses azides and terminal acetylenes to have 1,4-disubstituted-1,2,3- triazole products with excellent selectivity and high yield (Wu et al., 2004). In connection to our studies on the synthesis of new nucleosides, we decided to explore the feasibility of the 'click' chemistry for the synthesis of novel 1,2,3-triazoles containing the quinazolinone moiety.

The molecule of the title compound contains a quinazolinone moiety linked to a furan ring through a triazole ring. As shown in Fig.1, the furan ring is also connected to three benzoyl rings. The furan ring which adopts a twist conformation as indicated by Cremer & Pople (1975) puckering parameters Q(2)= 0.365 (2) Å and the phase angle φ = 85.7 (3)°. The five-membered ring (O2 C12 C13 C22 C30) is nearly perpendicular to (N3 N4 N5 C10 C11), (C16 to C21), (C24 to C29) and to (C32 to C37) with the dihedral angles of 79.6 (2), 75.9 (2), 83.4 (2) and 88.2 (2)°, respectively.

An intermolecular C–H···N and C–H···O non classic hydrogen bonds, building an infinite three-dimensional network ensure the cohesion of the crystal structure (see Table 1).

Experimental

The title compound, 3-((2,3,5-tri-O-benzoyl-β-D-ribofuranosyl- 1H-1,2,3-τriazol-4-yl)methyl) quinazolin-4(3H)-one was achieved by cycloaddition of propargylated quinazolinone with 2,3,5-tri-O-benzoyl-β-D– ribofuranosyl azide under microwave conditions with CuI as catalyst and without solvent. The product was obtained with quantitative yield (84%) and short reaction time (Ines et al. (2008); Krim et al. (2009)). The crude product was purified passing through a column packed with silica gel. Crystal suitable for X-ray analysis was obtained by slow evaporation of a methanol.

Refinement

H atoms were located in a difference map and treated as riding with C—H = 0.97 Å and 0.93 Å for –CH2– and aromatic CH, respectively and with Uiso(H) = 1.2 Ueq(C). In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and any references to the Flack parameter were removed.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.

Crystal data

C37H29N5O8 F(000) = 700
Mr = 671.65 Dx = 1.381 Mg m3
Monoclinic, P21 Melting point: 454 K
Hall symbol: P 2yb Mo Kα radiation, λ = 0.71073 Å
a = 11.2646 (2) Å Cell parameters from 4490 reflections
b = 5.6471 (1) Å θ = 0.8–28.5°
c = 25.7507 (4) Å µ = 0.10 mm1
β = 99.595 (1)° T = 296 K
V = 1615.15 (5) Å3 Block, colourless
Z = 2 0.33 × 0.29 × 0.25 mm

Data collection

Bruker X8 APEXII diffractometer 3651 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.029
Graphite monochromator θmax = 28.5°, θmin = 0.8°
φ and ω scans h = −15→13
26180 measured reflections k = −6→7
4490 independent reflections l = −32→34

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: difference Fourier map
wR(F2) = 0.081 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0384P)2 + 0.1513P] where P = (Fo2 + 2Fc2)/3
4490 reflections (Δ/σ)max = 0.001
451 parameters Δρmax = 0.14 e Å3
1 restraint Δρmin = −0.13 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 1.48779 (13) 0.5193 (3) 0.77079 (5) 0.0599 (4)
C1 1.47437 (15) 0.5402 (3) 0.81663 (7) 0.0394 (4)
C2 1.52690 (15) 0.3864 (4) 0.85969 (7) 0.0409 (4)
C3 1.60106 (17) 0.1978 (4) 0.85044 (9) 0.0527 (5)
H3 1.6160 0.1675 0.8166 0.063*
C4 1.6516 (2) 0.0575 (5) 0.89200 (12) 0.0715 (7)
H4 1.7013 −0.0682 0.8863 0.086*
C5 1.6288 (2) 0.1029 (6) 0.94223 (11) 0.0803 (8)
H5 1.6638 0.0073 0.9700 0.096*
C6 1.5565 (2) 0.2845 (6) 0.95168 (9) 0.0702 (7)
H6 1.5421 0.3122 0.9857 0.084*
C7 1.50357 (18) 0.4298 (4) 0.91030 (8) 0.0491 (5)
N1 1.42881 (18) 0.6125 (4) 0.92126 (7) 0.0596 (5)
N2 1.40433 (13) 0.7224 (3) 0.83175 (6) 0.0419 (3)
C8 1.38486 (19) 0.7462 (4) 0.88269 (8) 0.0545 (5)
H8 1.3355 0.8701 0.8898 0.065*
C9 1.35481 (18) 0.8972 (4) 0.79210 (8) 0.0517 (5)
H9A 1.4119 0.9228 0.7683 0.062*
H9B 1.3444 1.0464 0.8095 0.062*
C10 1.23629 (16) 0.8228 (3) 0.76079 (7) 0.0407 (4)
C11 1.18997 (17) 0.6052 (4) 0.74762 (8) 0.0445 (4)
H11 1.2253 0.4588 0.7566 0.053*
N3 1.15628 (14) 0.9885 (3) 0.73967 (6) 0.0439 (4)
N4 1.06111 (14) 0.8827 (3) 0.71381 (7) 0.0456 (4)
N5 1.08115 (13) 0.6486 (3) 0.71851 (6) 0.0392 (3)
C12 0.98816 (16) 0.4739 (3) 0.69944 (7) 0.0396 (4)
H12 1.0233 0.3450 0.6815 0.048*
O2 0.93768 (11) 0.3821 (3) 0.74159 (5) 0.0486 (3)
C13 0.81906 (16) 0.4779 (4) 0.74176 (7) 0.0441 (4)
H13 0.7602 0.3536 0.7298 0.053*
C14 0.80732 (18) 0.5416 (5) 0.79708 (8) 0.0529 (5)
H14A 0.7273 0.6033 0.7979 0.063*
H14B 0.8185 0.4013 0.8191 0.063*
C15 0.92262 (17) 0.7284 (4) 0.87000 (7) 0.0495 (5)
O3 0.89576 (12) 0.7166 (3) 0.81724 (5) 0.0523 (4)
O4 0.87382 (16) 0.6050 (4) 0.89822 (6) 0.0759 (5)
C16 1.01456 (17) 0.9096 (4) 0.88883 (7) 0.0482 (5)
C17 1.05099 (19) 1.0778 (4) 0.85589 (8) 0.0537 (5)
H17 1.0199 1.0759 0.8201 0.064*
C18 1.1337 (2) 1.2490 (5) 0.87610 (10) 0.0701 (7)
H18 1.1572 1.3638 0.8540 0.084*
C19 1.1811 (2) 1.2495 (6) 0.92904 (10) 0.0770 (8)
H19 1.2372 1.3641 0.9425 0.092*
C20 1.1460 (3) 1.0813 (7) 0.96195 (10) 0.0810 (8)
H20 1.1786 1.0821 0.9976 0.097*
C21 1.0629 (2) 0.9123 (6) 0.94236 (8) 0.0688 (7)
H21 1.0389 0.7995 0.9648 0.083*
C22 0.80514 (15) 0.6720 (3) 0.70008 (7) 0.0388 (4)
H22 0.8349 0.8231 0.7158 0.047*
O5 0.68225 (11) 0.6958 (2) 0.67425 (5) 0.0454 (3)
O6 0.65640 (13) 0.9904 (3) 0.72934 (6) 0.0625 (4)
C23 0.61705 (16) 0.8669 (4) 0.69278 (7) 0.0420 (4)
C24 0.49230 (16) 0.8815 (4) 0.66316 (7) 0.0440 (4)
C25 0.4252 (2) 1.0813 (5) 0.67048 (9) 0.0592 (6)
H25 0.4599 1.2044 0.6918 0.071*
C26 0.3065 (2) 1.0963 (6) 0.64598 (11) 0.0767 (9)
H26 0.2615 1.2304 0.6506 0.092*
C27 0.2555 (2) 0.9163 (7) 0.61522 (12) 0.0833 (10)
H27 0.1751 0.9266 0.5995 0.100*
C28 0.3214 (2) 0.7190 (7) 0.60707 (11) 0.0827 (9)
H28 0.2860 0.5976 0.5855 0.099*
C29 0.4405 (2) 0.7013 (5) 0.63111 (9) 0.0620 (6)
H29 0.4855 0.5682 0.6256 0.074*
C30 0.88453 (15) 0.5871 (4) 0.66172 (7) 0.0400 (4)
H30 0.9110 0.7159 0.6408 0.048*
O7 0.82166 (11) 0.4025 (3) 0.62974 (5) 0.0452 (3)
O8 0.97436 (13) 0.3887 (4) 0.58366 (6) 0.0704 (5)
C31 0.87760 (18) 0.3172 (4) 0.59115 (8) 0.0494 (5)
C32 0.80817 (18) 0.1250 (4) 0.56099 (7) 0.0486 (5)
C33 0.6908 (2) 0.0733 (5) 0.56586 (9) 0.0645 (6)
H33 0.6516 0.1623 0.5883 0.077*
C34 0.6317 (3) −0.1120 (6) 0.53723 (10) 0.0793 (8)
H34 0.5524 −0.1467 0.5402 0.095*
C35 0.6900 (3) −0.2449 (6) 0.50442 (10) 0.0794 (8)
H35 0.6503 −0.3700 0.4854 0.095*
C36 0.8059 (3) −0.1932 (6) 0.49975 (10) 0.0810 (9)
H36 0.8450 −0.2836 0.4776 0.097*
C37 0.8650 (2) −0.0097 (6) 0.52735 (9) 0.0666 (7)
H37 0.9438 0.0251 0.5236 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0670 (9) 0.0774 (11) 0.0363 (7) 0.0054 (9) 0.0121 (6) 0.0024 (7)
C1 0.0354 (9) 0.0417 (10) 0.0403 (9) −0.0081 (8) 0.0036 (7) −0.0004 (8)
C2 0.0346 (8) 0.0445 (10) 0.0420 (9) −0.0090 (8) 0.0021 (7) 0.0018 (8)
C3 0.0383 (10) 0.0541 (13) 0.0657 (13) −0.0055 (9) 0.0085 (9) −0.0017 (11)
C4 0.0495 (12) 0.0572 (15) 0.105 (2) 0.0085 (11) 0.0051 (12) 0.0176 (15)
C5 0.0767 (16) 0.082 (2) 0.0746 (17) 0.0064 (16) −0.0094 (13) 0.0320 (16)
C6 0.0818 (16) 0.0797 (18) 0.0457 (12) −0.0010 (15) 0.0006 (11) 0.0169 (13)
C7 0.0509 (11) 0.0548 (13) 0.0394 (10) −0.0091 (10) 0.0012 (8) 0.0036 (9)
N1 0.0744 (12) 0.0659 (12) 0.0388 (9) 0.0013 (11) 0.0105 (8) −0.0050 (9)
N2 0.0447 (8) 0.0390 (8) 0.0394 (8) −0.0056 (7) −0.0005 (6) 0.0015 (7)
C8 0.0628 (12) 0.0528 (13) 0.0472 (11) 0.0010 (11) 0.0075 (9) −0.0084 (10)
C9 0.0548 (11) 0.0391 (11) 0.0561 (12) −0.0088 (10) −0.0059 (9) 0.0077 (9)
C10 0.0464 (10) 0.0327 (10) 0.0417 (10) −0.0007 (8) 0.0032 (8) 0.0027 (8)
C11 0.0437 (10) 0.0319 (9) 0.0529 (11) 0.0057 (8) −0.0068 (8) 0.0032 (9)
N3 0.0439 (8) 0.0296 (7) 0.0580 (10) 0.0008 (7) 0.0074 (7) 0.0036 (7)
N4 0.0409 (8) 0.0308 (8) 0.0638 (10) 0.0030 (7) 0.0050 (7) 0.0048 (8)
N5 0.0400 (8) 0.0290 (8) 0.0467 (8) 0.0026 (6) 0.0018 (6) 0.0008 (6)
C12 0.0410 (9) 0.0318 (9) 0.0445 (10) 0.0010 (8) 0.0027 (7) −0.0018 (8)
O2 0.0480 (7) 0.0437 (7) 0.0533 (8) 0.0039 (7) 0.0059 (6) 0.0130 (7)
C13 0.0394 (9) 0.0440 (10) 0.0472 (10) −0.0087 (9) 0.0022 (7) 0.0005 (9)
C14 0.0479 (10) 0.0664 (14) 0.0444 (10) −0.0136 (10) 0.0075 (8) 0.0057 (10)
C15 0.0486 (10) 0.0630 (13) 0.0374 (10) 0.0065 (10) 0.0088 (8) 0.0042 (10)
O3 0.0546 (8) 0.0639 (9) 0.0369 (7) −0.0138 (7) 0.0028 (6) 0.0009 (7)
O4 0.0871 (11) 0.0960 (14) 0.0462 (8) −0.0236 (12) 0.0156 (8) 0.0069 (10)
C16 0.0489 (10) 0.0554 (12) 0.0395 (10) 0.0059 (10) 0.0048 (8) −0.0042 (9)
C17 0.0584 (12) 0.0580 (13) 0.0451 (11) 0.0031 (11) 0.0095 (9) −0.0044 (10)
C18 0.0831 (16) 0.0657 (16) 0.0636 (15) −0.0101 (14) 0.0185 (12) −0.0084 (13)
C19 0.0741 (16) 0.088 (2) 0.0684 (16) −0.0170 (16) 0.0097 (13) −0.0245 (16)
C20 0.0841 (17) 0.106 (2) 0.0478 (13) −0.0097 (18) −0.0033 (12) −0.0182 (16)
C21 0.0778 (15) 0.0861 (19) 0.0405 (11) −0.0056 (15) 0.0037 (10) 0.0000 (12)
C22 0.0349 (8) 0.0389 (10) 0.0408 (9) 0.0000 (8) 0.0009 (7) −0.0039 (8)
O5 0.0380 (6) 0.0471 (8) 0.0482 (7) 0.0065 (6) −0.0011 (5) −0.0111 (6)
O6 0.0558 (8) 0.0545 (9) 0.0761 (10) −0.0015 (8) 0.0079 (7) −0.0252 (9)
C23 0.0429 (9) 0.0365 (10) 0.0474 (10) −0.0012 (8) 0.0098 (8) −0.0019 (9)
C24 0.0411 (9) 0.0481 (11) 0.0443 (10) 0.0030 (9) 0.0116 (8) 0.0094 (9)
C25 0.0582 (12) 0.0618 (14) 0.0616 (13) 0.0162 (12) 0.0215 (10) 0.0190 (12)
C26 0.0622 (15) 0.095 (2) 0.0780 (17) 0.0330 (16) 0.0267 (13) 0.0387 (17)
C27 0.0468 (13) 0.123 (3) 0.0780 (18) 0.0130 (17) 0.0044 (12) 0.048 (2)
C28 0.0629 (15) 0.095 (2) 0.0812 (18) −0.0118 (16) −0.0149 (13) 0.0114 (17)
C29 0.0522 (12) 0.0651 (15) 0.0647 (14) −0.0008 (12) −0.0019 (10) 0.0026 (12)
C30 0.0417 (9) 0.0388 (10) 0.0385 (9) 0.0017 (8) 0.0040 (7) −0.0005 (8)
O7 0.0436 (7) 0.0520 (8) 0.0394 (7) −0.0014 (6) 0.0051 (5) −0.0093 (6)
O8 0.0559 (9) 0.0925 (13) 0.0672 (10) −0.0132 (10) 0.0234 (7) −0.0204 (10)
C31 0.0494 (11) 0.0585 (13) 0.0404 (10) 0.0063 (10) 0.0076 (8) −0.0048 (9)
C32 0.0521 (11) 0.0568 (12) 0.0355 (9) 0.0057 (10) 0.0034 (8) −0.0033 (9)
C33 0.0683 (14) 0.0726 (16) 0.0567 (13) −0.0108 (13) 0.0225 (11) −0.0148 (13)
C34 0.0811 (17) 0.089 (2) 0.0725 (16) −0.0296 (17) 0.0256 (14) −0.0197 (16)
C35 0.102 (2) 0.0711 (18) 0.0631 (15) −0.0160 (17) 0.0086 (14) −0.0229 (14)
C36 0.0784 (17) 0.096 (2) 0.0663 (15) 0.0148 (16) 0.0043 (13) −0.0357 (16)
C37 0.0544 (12) 0.0889 (19) 0.0549 (13) 0.0114 (13) 0.0043 (10) −0.0217 (13)

Geometric parameters (Å, º)

O1—C1 1.220 (2) C17—C18 1.383 (3)
C1—N2 1.391 (2) C17—H17 0.9300
C1—C2 1.455 (3) C18—C19 1.379 (4)
C2—C7 1.394 (3) C18—H18 0.9300
C2—C3 1.398 (3) C19—C20 1.374 (4)
C3—C4 1.376 (3) C19—H19 0.9300
C3—H3 0.9300 C20—C21 1.373 (4)
C4—C5 1.384 (4) C20—H20 0.9300
C4—H4 0.9300 C21—H21 0.9300
C5—C6 1.357 (4) C22—O5 1.439 (2)
C5—H5 0.9300 C22—C30 1.517 (2)
C6—C7 1.397 (3) C22—H22 0.9800
C6—H6 0.9300 O5—C23 1.348 (2)
C7—N1 1.390 (3) O6—C23 1.196 (2)
N1—C8 1.280 (3) C23—C24 1.485 (3)
N2—C8 1.372 (2) C24—C29 1.377 (3)
N2—C9 1.462 (3) C24—C25 1.388 (3)
C8—H8 0.9300 C25—C26 1.383 (3)
C9—C10 1.500 (3) C25—H25 0.9300
C9—H9A 0.9700 C26—C27 1.356 (5)
C9—H9B 0.9700 C26—H26 0.9300
C10—N3 1.349 (2) C27—C28 1.374 (5)
C10—C11 1.356 (3) C27—H27 0.9300
C11—N5 1.348 (2) C28—C29 1.385 (3)
C11—H11 0.9300 C28—H28 0.9300
N3—N4 1.308 (2) C29—H29 0.9300
N4—N5 1.343 (2) C30—O7 1.439 (2)
N5—C12 1.463 (2) C30—H30 0.9800
C12—O2 1.406 (2) O7—C31 1.351 (2)
C12—C30 1.529 (2) O8—C31 1.207 (2)
C12—H12 0.9800 C31—C32 1.480 (3)
O2—C13 1.442 (2) C32—C33 1.380 (3)
C13—C14 1.496 (3) C32—C37 1.387 (3)
C13—C22 1.524 (3) C33—C34 1.385 (4)
C13—H13 0.9800 C33—H33 0.9300
C14—O3 1.437 (3) C34—C35 1.376 (4)
C14—H14A 0.9700 C34—H34 0.9300
C14—H14B 0.9700 C35—C36 1.362 (4)
C15—O4 1.204 (3) C35—H35 0.9300
C15—O3 1.343 (2) C36—C37 1.365 (4)
C15—C16 1.479 (3) C36—H36 0.9300
C16—C17 1.381 (3) C37—H37 0.9300
C16—C21 1.395 (3)
O1—C1—N2 120.65 (17) C16—C17—C18 120.0 (2)
O1—C1—C2 125.40 (18) C16—C17—H17 120.0
N2—C1—C2 113.95 (16) C18—C17—H17 120.0
C7—C2—C3 120.29 (19) C19—C18—C17 120.0 (3)
C7—C2—C1 119.44 (18) C19—C18—H18 120.0
C3—C2—C1 120.26 (18) C17—C18—H18 120.0
C4—C3—C2 119.2 (2) C20—C19—C18 120.3 (3)
C4—C3—H3 120.4 C20—C19—H19 119.9
C2—C3—H3 120.4 C18—C19—H19 119.9
C3—C4—C5 120.2 (2) C21—C20—C19 120.2 (2)
C3—C4—H4 119.9 C21—C20—H20 119.9
C5—C4—H4 119.9 C19—C20—H20 119.9
C6—C5—C4 121.2 (2) C20—C21—C16 120.1 (3)
C6—C5—H5 119.4 C20—C21—H21 120.0
C4—C5—H5 119.4 C16—C21—H21 120.0
C5—C6—C7 120.0 (2) O5—C22—C30 110.78 (13)
C5—C6—H6 120.0 O5—C22—C13 111.78 (15)
C7—C6—H6 120.0 C30—C22—C13 103.22 (16)
N1—C7—C2 122.38 (18) O5—C22—H22 110.3
N1—C7—C6 118.5 (2) C30—C22—H22 110.3
C2—C7—C6 119.1 (2) C13—C22—H22 110.3
C8—N1—C7 116.71 (17) C23—O5—C22 116.25 (14)
C8—N2—C1 121.92 (17) O6—C23—O5 122.97 (17)
C8—N2—C9 119.88 (18) O6—C23—C24 124.52 (18)
C1—N2—C9 118.16 (16) O5—C23—C24 112.50 (16)
N1—C8—N2 125.5 (2) C29—C24—C25 119.8 (2)
N1—C8—H8 117.2 C29—C24—C23 122.45 (19)
N2—C8—H8 117.2 C25—C24—C23 117.7 (2)
N2—C9—C10 112.83 (17) C26—C25—C24 119.7 (3)
N2—C9—H9A 109.0 C26—C25—H25 120.2
C10—C9—H9A 109.0 C24—C25—H25 120.2
N2—C9—H9B 109.0 C27—C26—C25 120.3 (3)
C10—C9—H9B 109.0 C27—C26—H26 119.9
H9A—C9—H9B 107.8 C25—C26—H26 119.9
N3—C10—C11 108.93 (16) C26—C27—C28 120.6 (2)
N3—C10—C9 119.82 (17) C26—C27—H27 119.7
C11—C10—C9 131.24 (18) C28—C27—H27 119.7
N5—C11—C10 104.50 (17) C27—C28—C29 119.9 (3)
N5—C11—H11 127.7 C27—C28—H28 120.1
C10—C11—H11 127.7 C29—C28—H28 120.1
N4—N3—C10 108.91 (16) C24—C29—C28 119.8 (3)
N3—N4—N5 107.01 (15) C24—C29—H29 120.1
N4—N5—C11 110.65 (16) C28—C29—H29 120.1
N4—N5—C12 122.23 (15) O7—C30—C22 108.31 (14)
C11—N5—C12 126.70 (16) O7—C30—C12 108.15 (15)
O2—C12—N5 110.41 (14) C22—C30—C12 100.90 (14)
O2—C12—C30 106.29 (14) O7—C30—H30 112.9
N5—C12—C30 111.07 (15) C22—C30—H30 112.9
O2—C12—H12 109.7 C12—C30—H30 112.9
N5—C12—H12 109.7 C31—O7—C30 115.70 (15)
C30—C12—H12 109.7 O8—C31—O7 122.9 (2)
C12—O2—C13 110.98 (14) O8—C31—C32 124.97 (19)
O2—C13—C14 108.78 (15) O7—C31—C32 112.15 (17)
O2—C13—C22 104.75 (14) C33—C32—C37 119.3 (2)
C14—C13—C22 118.86 (19) C33—C32—C31 122.55 (19)
O2—C13—H13 108.0 C37—C32—C31 118.14 (19)
C14—C13—H13 108.0 C32—C33—C34 119.6 (2)
C22—C13—H13 108.0 C32—C33—H33 120.2
O3—C14—C13 110.08 (15) C34—C33—H33 120.2
O3—C14—H14A 109.6 C35—C34—C33 120.2 (2)
C13—C14—H14A 109.6 C35—C34—H34 119.9
O3—C14—H14B 109.6 C33—C34—H34 119.9
C13—C14—H14B 109.6 C36—C35—C34 120.0 (3)
H14A—C14—H14B 108.2 C36—C35—H35 120.0
O4—C15—O3 122.2 (2) C34—C35—H35 120.0
O4—C15—C16 124.62 (18) C35—C36—C37 120.5 (2)
O3—C15—C16 113.16 (17) C35—C36—H36 119.7
C15—O3—C14 115.17 (16) C37—C36—H36 119.7
C17—C16—C21 119.5 (2) C36—C37—C32 120.4 (2)
C17—C16—C15 122.56 (17) C36—C37—H37 119.8
C21—C16—C15 117.9 (2) C32—C37—H37 119.8
O1—C1—C2—C7 −179.64 (19) O3—C15—C16—C21 −170.2 (2)
N2—C1—C2—C7 0.4 (2) C21—C16—C17—C18 −0.8 (3)
O1—C1—C2—C3 0.9 (3) C15—C16—C17—C18 177.3 (2)
N2—C1—C2—C3 −178.99 (16) C16—C17—C18—C19 1.0 (4)
C7—C2—C3—C4 −0.7 (3) C17—C18—C19—C20 −0.5 (4)
C1—C2—C3—C4 178.7 (2) C18—C19—C20—C21 −0.3 (5)
C2—C3—C4—C5 0.2 (4) C19—C20—C21—C16 0.5 (4)
C3—C4—C5—C6 0.2 (4) C17—C16—C21—C20 0.0 (4)
C4—C5—C6—C7 −0.1 (4) C15—C16—C21—C20 −178.1 (2)
C3—C2—C7—N1 −178.85 (19) O2—C13—C22—O5 147.77 (14)
C1—C2—C7—N1 1.7 (3) C14—C13—C22—O5 −90.54 (19)
C3—C2—C7—C6 0.8 (3) O2—C13—C22—C30 28.67 (18)
C1—C2—C7—C6 −178.6 (2) C14—C13—C22—C30 150.35 (16)
C5—C6—C7—N1 179.3 (2) C30—C22—O5—C23 −148.57 (16)
C5—C6—C7—C2 −0.4 (4) C13—C22—O5—C23 96.90 (19)
C2—C7—N1—C8 −2.3 (3) C22—O5—C23—O6 −1.7 (3)
C6—C7—N1—C8 178.0 (2) C22—O5—C23—C24 178.91 (16)
O1—C1—N2—C8 178.11 (19) O6—C23—C24—C29 −162.5 (2)
C2—C1—N2—C8 −2.0 (2) O5—C23—C24—C29 16.9 (3)
O1—C1—N2—C9 −4.4 (3) O6—C23—C24—C25 14.6 (3)
C2—C1—N2—C9 175.55 (15) O5—C23—C24—C25 −166.00 (16)
C7—N1—C8—N2 0.8 (3) C29—C24—C25—C26 0.7 (3)
C1—N2—C8—N1 1.5 (3) C23—C24—C25—C26 −176.40 (19)
C9—N2—C8—N1 −176.0 (2) C24—C25—C26—C27 0.4 (3)
C8—N2—C9—C10 −95.6 (2) C25—C26—C27—C28 −1.3 (4)
C1—N2—C9—C10 86.8 (2) C26—C27—C28—C29 1.0 (4)
N2—C9—C10—N3 152.32 (18) C25—C24—C29—C28 −1.0 (3)
N2—C9—C10—C11 −28.9 (3) C23—C24—C29—C28 176.0 (2)
N3—C10—C11—N5 −0.2 (2) C27—C28—C29—C24 0.1 (4)
C9—C10—C11—N5 −179.07 (19) O5—C22—C30—O7 −42.7 (2)
C11—C10—N3—N4 0.2 (2) C13—C22—C30—O7 77.08 (16)
C9—C10—N3—N4 179.22 (17) O5—C22—C30—C12 −156.17 (15)
C10—N3—N4—N5 −0.1 (2) C13—C22—C30—C12 −36.37 (17)
N3—N4—N5—C11 0.0 (2) O2—C12—C30—O7 −81.39 (17)
N3—N4—N5—C12 173.02 (15) N5—C12—C30—O7 158.48 (14)
C10—C11—N5—N4 0.1 (2) O2—C12—C30—C22 32.19 (18)
C10—C11—N5—C12 −172.54 (17) N5—C12—C30—C22 −87.95 (17)
N4—N5—C12—O2 −101.9 (2) C22—C30—O7—C31 176.14 (16)
C11—N5—C12—O2 70.0 (2) C12—C30—O7—C31 −75.31 (19)
N4—N5—C12—C30 15.8 (2) C30—O7—C31—O8 0.3 (3)
C11—N5—C12—C30 −172.38 (17) C30—O7—C31—C32 178.77 (15)
N5—C12—O2—C13 105.43 (16) O8—C31—C32—C33 −170.3 (2)
C30—C12—O2—C13 −15.1 (2) O7—C31—C32—C33 11.3 (3)
C12—O2—C13—C14 −136.61 (18) O8—C31—C32—C37 10.9 (3)
C12—O2—C13—C22 −8.5 (2) O7—C31—C32—C37 −167.5 (2)
O2—C13—C14—O3 60.5 (2) C37—C32—C33—C34 0.1 (4)
C22—C13—C14—O3 −59.1 (2) C31—C32—C33—C34 −178.7 (2)
O4—C15—O3—C14 −1.7 (3) C32—C33—C34—C35 0.5 (4)
C16—C15—O3—C14 179.56 (18) C33—C34—C35—C36 −0.5 (5)
C13—C14—O3—C15 −157.97 (19) C34—C35—C36—C37 −0.1 (5)
O4—C15—C16—C17 −167.0 (2) C35—C36—C37—C32 0.7 (4)
O3—C15—C16—C17 11.7 (3) C33—C32—C37—C36 −0.7 (4)
O4—C15—C16—C21 11.1 (3) C31—C32—C37—C36 178.2 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C3—H3···O6i 0.93 2.57 3.483 (3) 168
C13—H13···O6ii 0.98 2.36 3.293 (3) 159
C6—H6···N1iii 0.93 2.62 3.390 (3) 141

Symmetry codes: (i) x+1, y−1, z; (ii) x, y−1, z; (iii) −x+3, y−1/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT6845).

References

  1. Bridges, A. J. (2001). Chem. Rev. 101, 2541–2571. [DOI] [PubMed]
  2. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chen, M. D., Lu, S. J., Yuag, G. P., Yang, S. Y. & Du, X. L. (2000). Heterocycl. Commun. 6, 421–426.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  5. Diana, G. D. & Nitz, J. J. (1993). Eur. Patent 1, 1–38.
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Huisgen, R. (1963). Angew. Chem. Int. Ed. 2, 565–598.
  8. Ines, N., Ioannis, K. K., Carole, D., Elizabeth, C., Mauro, I. & Thierry, B. (2008). Tetrahedron Lett. 49, 7033–7036.
  9. Krim, J., Sillahi, B., Taourirte, M., Rakib, E. M. & Engels, J. W. (2009). Arkivoc, xiii, 142–152.
  10. Manfredini, S., Vicentini, C. B., Manfrini, M., Bianchi, N., Rutigliano, C., Mischiati, C. & Gambari, R. (2000). Bioorg. Med. Chem. 8, 2343–2346. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Traxler, P. M. (1998). Exp. Opin. Ther. Patents, 8, 1599–1625.
  14. Wakeling, A. E. (2005). Handbook of Experimental Pharmacology, Vol. 167, pp. 433–450.
  15. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  16. Wu, P., Feldman, A. K., Nugent, A. K., Hawker, C. J., Scheel, A., Voit, B., Pyun, J., Frechet, J. M. J., Sharpless, K. B. & Fokin, V. V. (2004). Angew. Chem. Int. Ed. 43, 3928–3932. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812042778/bt6845sup1.cif

e-68-o3166-sup1.cif (39.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812042778/bt6845Isup2.hkl

e-68-o3166-Isup2.hkl (215.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES