Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Oct 20;68(Pt 11):o3167. doi: 10.1107/S1600536812042870

(3-Oxo-3H-benzo[f]chromen-1-yl)methyl piperidine-1-carbodithio­ate

O Kotresh a, K Mahesh Kumar a, N M Mahabaleshwaraiah a, H K Arunkashi b, H C Devarajegowda b,*
PMCID: PMC3515261  PMID: 23284481

Abstract

In the title compound, C20H19N O2S2,the 3Hbenzo-chromene ring system is nearly planar, with a maximum deviation of 0.036 (2) Å, and the piperidine ring adopts a chair conformation: the bond-angle sum for its N atom is 358.7°. The dihedral angle between the 3H-benzo[f]chromene ring and the piperidine ring is 89.07 (8)°. In the crystal, C—H⋯O hydrogen bonds lead to [010] C(6) chains and weak aromatic π–π inter­actions between the fused pyran ring and fused benzene ring of benzochromene [centroid–centroid distance = 3.652 (1) Å] are also observed.

Related literature  

For a related structure, background to coumarins and details of the synthesis of the title compound, see: Kumar et al. (2012).graphic file with name e-68-o3167-scheme1.jpg

Experimental  

Crystal data  

  • C20H19NO2S2

  • M r = 369.48

  • Monoclinic, Inline graphic

  • a = 12.4508 (3) Å

  • b = 10.1924 (3) Å

  • c = 14.0188 (4) Å

  • β = 100.953 (2)°

  • V = 1746.63 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 296 K

  • 0.24 × 0.20 × 0.12 mm

Data collection  

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007) T min = 0.770, T max = 1.000

  • 12000 measured reflections

  • 2993 independent reflections

  • 2380 reflections with I > 2σ(I)

  • R int = 0.029

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.082

  • S = 1.06

  • 2993 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812042870/hb6973sup1.cif

e-68-o3167-sup1.cif (19KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812042870/hb6973Isup2.hkl

e-68-o3167-Isup2.hkl (143.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812042870/hb6973Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O4i 0.93 2.56 3.308 (2) 138

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Universities Sophisticated Instrumental Centre, Karnatak University, Dharwad, for the X-ray data collection and the GCMS, IR, CHNS and NMR data. KMK is grateful to Karnatak Science College, Dharwad, for providing laboratory facilities.

supplementary crystallographic information

Comment

As part of our ongoing studies of coumarins (or 2H-chromen-2-ones) with possible biological activities (Kumar et al., 2012), we now describe the structure of the title compound, (I).

The asymmetric unit of (I) is shown in Fig. 1. The 3Hbenzo- chromene ring system (O3/C6–C18) is essentially planar, with a maximum deviation of 0.036 (2) Å for atom C15 and the piperidine ring adopts a chair conformation. The dihedral angle between the 3Hbenzo- chromene (O3/C6–C18) ring and the piperidine (N5/C21–C25) ring is 81.07 (8)°.

In the crystal structure, (Fig. 2), C11—H11···O4 hydrogen bonds and π–π interactions between the fused pyran ring (O3/C6–C10) and fused benzene(C13–C18) ring of benzo-chromene [shortest centroid–centroid distance = 3.652 (1) Å] are observed.

Experimental

This compound was prepared according to the reported method (Kumar et al., 2012). Colourless needles of the title compound were grown from a mixed solution of EtOH / CHCl3(V/V = 1/1) by slow evaporation at room temperature. Yield= 85%, m.p. 455 K.

Refinement

All H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic H and C—H = 0.97 Å for methylene H and refined using a riding model with Uiso(H) = 1.2Ueq(C) foraromatic and methylene H.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.

Crystal data

C20H19NO2S2 F(000) = 776
Mr = 369.48 Dx = 1.405 Mg m3
Monoclinic, P21/c Melting point: 455 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 12.4508 (3) Å Cell parameters from 2993 reflections
b = 10.1924 (3) Å θ = 1.7–24.9°
c = 14.0188 (4) Å µ = 0.32 mm1
β = 100.953 (2)° T = 296 K
V = 1746.63 (8) Å3 Plate, colourless
Z = 4 0.24 × 0.20 × 0.12 mm

Data collection

Bruker SMART CCD diffractometer 2993 independent reflections
Radiation source: fine-focus sealed tube 2380 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.029
ω and φ scans θmax = 24.9°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) h = −14→14
Tmin = 0.770, Tmax = 1.000 k = −12→10
12000 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0374P)2 + 0.1604P] where P = (Fo2 + 2Fc2)/3
2993 reflections (Δ/σ)max < 0.001
226 parameters Δρmax = 0.16 e Å3
0 restraints Δρmin = −0.14 e Å3

Special details

Experimental. IR (KBr): 655 cm-1(C—S), 1235 cm-1(C=S), 1007 cm-1(C—O), 877 cm-1(C—N),1137 cm-1(C—O—C), 1720 cm-1(C=O). GCMS: m/e: 369. 1H NMR (400 MHz, CDCl3, \?, p.p.m.): 1.74(s, 6H, Piperidine-CH2), 3.90(s, 2H, Piperidine-CH2), 4.32(s, 2H Piperidine-CH2), 4.85(s, 2H, Methylene-CH2), 6.67(s,1H, Ar—H), 7.64(s, 2H, Ar—H), 7.65(s, 2H, Ar—H), 7.88(m,1H, Ar—H), 8.56(m,1H, Ar—H). Elemental analysis for C20H19NO2S2: C, 64.93; H, 5.11; N, 3.68.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.27800 (4) 0.69065 (5) 0.37375 (3) 0.05055 (15)
S2 0.48792 (4) 0.78586 (6) 0.49758 (3) 0.06250 (17)
O3 0.09397 (10) 0.81457 (13) 0.67448 (8) 0.0520 (3)
O4 0.12823 (11) 0.60307 (14) 0.68426 (9) 0.0669 (4)
N5 0.46698 (11) 0.57768 (15) 0.38149 (9) 0.0502 (4)
C6 0.13705 (14) 0.7038 (2) 0.64137 (12) 0.0502 (5)
C7 0.18621 (14) 0.72190 (18) 0.55883 (12) 0.0469 (4)
H7 0.2160 0.6487 0.5340 0.056*
C8 0.19268 (12) 0.83761 (17) 0.51406 (11) 0.0412 (4)
C9 0.15023 (12) 0.95573 (17) 0.55367 (11) 0.0410 (4)
C10 0.10299 (13) 0.93577 (18) 0.63419 (11) 0.0448 (4)
C11 0.05735 (16) 1.0358 (2) 0.68248 (13) 0.0619 (6)
H11 0.0263 1.0168 0.7362 0.074*
C12 0.05917 (17) 1.1592 (2) 0.64997 (15) 0.0691 (6)
H12 0.0297 1.2258 0.6824 0.083*
C13 0.10462 (15) 1.19123 (19) 0.56782 (14) 0.0574 (5)
C14 0.10225 (19) 1.3216 (2) 0.53383 (19) 0.0753 (7)
H14 0.0715 1.3865 0.5668 0.090*
C15 0.14331 (19) 1.3548 (2) 0.4550 (2) 0.0779 (7)
H15 0.1404 1.4412 0.4333 0.093*
C16 0.18980 (18) 1.2583 (2) 0.40712 (19) 0.0778 (7)
H16 0.2185 1.2806 0.3527 0.093*
C17 0.19479 (16) 1.1313 (2) 0.43759 (16) 0.0662 (6)
H17 0.2279 1.0695 0.4039 0.079*
C18 0.15154 (12) 1.09039 (18) 0.51844 (12) 0.0473 (4)
C19 0.24178 (14) 0.84276 (18) 0.42314 (12) 0.0491 (4)
H19A 0.3070 0.8968 0.4371 0.059*
H19B 0.1901 0.8873 0.3731 0.059*
C20 0.42141 (14) 0.67877 (17) 0.41861 (11) 0.0438 (4)
C21 0.41030 (16) 0.48928 (19) 0.30567 (13) 0.0568 (5)
H21A 0.3318 0.5002 0.2989 0.068*
H21B 0.4282 0.3990 0.3239 0.068*
C22 0.44414 (17) 0.5192 (2) 0.21075 (13) 0.0663 (6)
H22A 0.4193 0.6065 0.1894 0.080*
H22B 0.4098 0.4571 0.1619 0.080*
C23 0.56693 (18) 0.5117 (2) 0.22032 (15) 0.0780 (7)
H23A 0.5871 0.5421 0.1606 0.094*
H23B 0.5903 0.4211 0.2303 0.094*
C24 0.62477 (16) 0.5941 (2) 0.30422 (15) 0.0700 (6)
H24A 0.7030 0.5792 0.3131 0.084*
H24B 0.6112 0.6862 0.2892 0.084*
C25 0.58614 (14) 0.5613 (2) 0.39697 (13) 0.0630 (6)
H25A 0.6055 0.4715 0.4158 0.076*
H25B 0.6212 0.6189 0.4488 0.076*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0437 (3) 0.0616 (3) 0.0487 (3) 0.0059 (2) 0.01482 (19) −0.0062 (2)
S2 0.0606 (3) 0.0702 (4) 0.0536 (3) 0.0040 (3) 0.0032 (2) −0.0135 (2)
O3 0.0525 (7) 0.0653 (9) 0.0419 (6) 0.0039 (6) 0.0182 (5) 0.0000 (6)
O4 0.0801 (9) 0.0660 (10) 0.0613 (8) 0.0012 (8) 0.0303 (7) 0.0170 (8)
N5 0.0491 (8) 0.0593 (10) 0.0437 (7) 0.0116 (7) 0.0126 (6) −0.0042 (7)
C6 0.0484 (10) 0.0607 (14) 0.0433 (9) 0.0027 (9) 0.0130 (8) 0.0041 (9)
C7 0.0466 (10) 0.0502 (12) 0.0478 (9) 0.0071 (8) 0.0192 (8) 0.0002 (8)
C8 0.0324 (8) 0.0510 (12) 0.0416 (8) 0.0034 (8) 0.0108 (7) 0.0005 (8)
C9 0.0302 (8) 0.0487 (11) 0.0440 (9) 0.0018 (7) 0.0069 (7) −0.0048 (8)
C10 0.0384 (9) 0.0544 (12) 0.0411 (9) 0.0026 (8) 0.0062 (7) −0.0051 (8)
C11 0.0632 (13) 0.0766 (17) 0.0473 (10) 0.0106 (11) 0.0143 (9) −0.0165 (10)
C12 0.0717 (14) 0.0691 (17) 0.0649 (13) 0.0160 (12) 0.0090 (11) −0.0274 (12)
C13 0.0477 (11) 0.0527 (13) 0.0657 (12) 0.0018 (9) −0.0043 (9) −0.0156 (10)
C14 0.0724 (15) 0.0483 (14) 0.0958 (17) 0.0052 (11) −0.0076 (13) −0.0186 (12)
C15 0.0727 (15) 0.0456 (14) 0.1077 (18) −0.0077 (11) −0.0022 (13) 0.0075 (13)
C16 0.0667 (14) 0.0626 (16) 0.1065 (17) −0.0027 (12) 0.0223 (13) 0.0195 (13)
C17 0.0600 (12) 0.0517 (14) 0.0930 (15) 0.0079 (10) 0.0298 (11) 0.0149 (11)
C18 0.0316 (9) 0.0487 (12) 0.0594 (10) −0.0001 (8) 0.0033 (7) −0.0035 (9)
C19 0.0467 (10) 0.0546 (12) 0.0507 (9) 0.0123 (8) 0.0209 (8) 0.0073 (8)
C20 0.0484 (10) 0.0524 (12) 0.0334 (8) 0.0075 (8) 0.0151 (7) 0.0053 (7)
C21 0.0619 (12) 0.0504 (12) 0.0602 (11) 0.0073 (9) 0.0172 (9) −0.0064 (9)
C22 0.0743 (14) 0.0786 (16) 0.0473 (10) 0.0168 (11) 0.0150 (9) −0.0072 (10)
C23 0.0788 (15) 0.106 (2) 0.0560 (12) 0.0296 (13) 0.0302 (11) 0.0052 (12)
C24 0.0554 (12) 0.0809 (17) 0.0787 (14) 0.0189 (11) 0.0252 (10) 0.0102 (12)
C25 0.0504 (11) 0.0821 (16) 0.0569 (11) 0.0239 (10) 0.0112 (9) −0.0007 (10)

Geometric parameters (Å, º)

S1—C20 1.7809 (17) C14—H14 0.9300
S1—C19 1.7904 (18) C15—C16 1.379 (3)
S2—C20 1.6597 (18) C15—H15 0.9300
O3—C6 1.368 (2) C16—C17 1.361 (3)
O3—C10 1.372 (2) C16—H16 0.9300
O4—C6 1.205 (2) C17—C18 1.407 (3)
N5—C20 1.329 (2) C17—H17 0.9300
N5—C25 1.468 (2) C19—H19A 0.9700
N5—C21 1.468 (2) C19—H19B 0.9700
C6—C7 1.420 (2) C21—C22 1.501 (3)
C7—C8 1.346 (2) C21—H21A 0.9700
C7—H7 0.9300 C21—H21B 0.9700
C8—C9 1.466 (2) C22—C23 1.511 (3)
C8—C19 1.516 (2) C22—H22A 0.9700
C9—C10 1.383 (2) C22—H22B 0.9700
C9—C18 1.460 (2) C23—C24 1.512 (3)
C10—C11 1.403 (2) C23—H23A 0.9700
C11—C12 1.339 (3) C23—H23B 0.9700
C11—H11 0.9300 C24—C25 1.507 (3)
C12—C13 1.414 (3) C24—H24A 0.9700
C12—H12 0.9300 C24—H24B 0.9700
C13—C14 1.410 (3) C25—H25A 0.9700
C13—C18 1.425 (2) C25—H25B 0.9700
C14—C15 1.346 (3)
C20—S1—C19 103.40 (8) C17—C18—C9 125.56 (17)
C6—O3—C10 122.36 (13) C13—C18—C9 118.80 (16)
C20—N5—C25 121.67 (16) C8—C19—S1 117.83 (12)
C20—N5—C21 125.25 (15) C8—C19—H19A 107.8
C25—N5—C21 111.76 (14) S1—C19—H19A 107.8
O4—C6—O3 117.06 (16) C8—C19—H19B 107.8
O4—C6—C7 127.68 (18) S1—C19—H19B 107.8
O3—C6—C7 115.26 (16) H19A—C19—H19B 107.2
C8—C7—C6 124.55 (16) N5—C20—S2 125.10 (13)
C8—C7—H7 117.7 N5—C20—S1 112.86 (13)
C6—C7—H7 117.7 S2—C20—S1 122.04 (10)
C7—C8—C9 119.04 (14) N5—C21—C22 109.86 (16)
C7—C8—C19 119.48 (15) N5—C21—H21A 109.7
C9—C8—C19 121.48 (14) C22—C21—H21A 109.7
C10—C9—C18 116.62 (15) N5—C21—H21B 109.7
C10—C9—C8 115.34 (15) C22—C21—H21B 109.7
C18—C9—C8 128.03 (14) H21A—C21—H21B 108.2
O3—C10—C9 123.31 (15) C21—C22—C23 111.14 (16)
O3—C10—C11 112.56 (15) C21—C22—H22A 109.4
C9—C10—C11 124.12 (18) C23—C22—H22A 109.4
C12—C11—C10 118.93 (19) C21—C22—H22B 109.4
C12—C11—H11 120.5 C23—C22—H22B 109.4
C10—C11—H11 120.5 H22A—C22—H22B 108.0
C11—C12—C13 121.94 (18) C22—C23—C24 111.43 (16)
C11—C12—H12 119.0 C22—C23—H23A 109.3
C13—C12—H12 119.0 C24—C23—H23A 109.3
C14—C13—C12 120.4 (2) C22—C23—H23B 109.3
C14—C13—C18 120.0 (2) C24—C23—H23B 109.3
C12—C13—C18 119.57 (18) H23A—C23—H23B 108.0
C15—C14—C13 121.8 (2) C25—C24—C23 111.42 (19)
C15—C14—H14 119.1 C25—C24—H24A 109.3
C13—C14—H14 119.1 C23—C24—H24A 109.3
C14—C15—C16 118.7 (2) C25—C24—H24B 109.3
C14—C15—H15 120.6 C23—C24—H24B 109.3
C16—C15—H15 120.6 H24A—C24—H24B 108.0
C17—C16—C15 121.6 (2) N5—C25—C24 109.06 (15)
C17—C16—H16 119.2 N5—C25—H25A 109.9
C15—C16—H16 119.2 C24—C25—H25A 109.9
C16—C17—C18 122.2 (2) N5—C25—H25B 109.9
C16—C17—H17 118.9 C24—C25—H25B 109.9
C18—C17—H17 118.9 H25A—C25—H25B 108.3
C17—C18—C13 115.63 (18)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C11—H11···O4i 0.93 2.56 3.308 (2) 138

Symmetry code: (i) −x, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6973).

References

  1. Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Kumar, K. M., Kour, D., Kapoor, K., Mahabaleshwaraiah, N. M., Kotresh, O., Gupta, V. K. & Kant, R. (2012). Acta Cryst. E68, o878–o879. [DOI] [PMC free article] [PubMed]
  4. Sheldrick, G. M. (2007). SADABS Bruker AXS Inc., Madison, Wisconsin,USA.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812042870/hb6973sup1.cif

e-68-o3167-sup1.cif (19KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812042870/hb6973Isup2.hkl

e-68-o3167-Isup2.hkl (143.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812042870/hb6973Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES