Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Oct 20;68(Pt 11):o3189. doi: 10.1107/S1600536812042419

(2E)-1-[2,3-Dichloro-6-methyl-5-(trifluoro­meth­yl)phen­yl]-2-(1-phenyl­ethyl­idene)hydrazine

Hoong-Kun Fun a,b,*,, Wan-Sin Loh a,§, Manjunath Bhat c,d, T Arulmoli c, G K Nagaraja d
PMCID: PMC3515280  PMID: 23284500

Abstract

The title compound, C16H13Cl2F3N2, exists in an E conformation with respect to the C=N bond [1.2952 (11) Å] and the C—N—N=C torsion angle is 175.65 (8)°. The dihedral angle between the benzene rings is 42.09 (4)°. An intra­molecular C—H⋯F hydrogen bond generates an S(6) ring. In the crystal, the mol­ecules are linked into [101] chains by C—H⋯F hydrogen bonds.

Related literature  

For background to the properties and applications of hydrazones, see: Barbazan et al. (2008); Banerjee et al. (2009); Ghavtadze et al. (2008). For related structures, see: Fun et al. (2011a ,b ). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).graphic file with name e-68-o3189-scheme1.jpg

Experimental  

Crystal data  

  • C16H13Cl2F3N2

  • M r = 361.18

  • Monoclinic, Inline graphic

  • a = 11.2600 (16) Å

  • b = 11.4025 (17) Å

  • c = 14.8398 (16) Å

  • β = 123.773 (7)°

  • V = 1583.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.44 mm−1

  • T = 100 K

  • 0.32 × 0.26 × 0.22 mm

Data collection  

  • Bruker SMART APEXII Duo CCD diffractometer

  • Absorption correction: multi-scan (SADABS); Bruker, 2009) T min = 0.872, T max = 0.911

  • 22269 measured reflections

  • 5714 independent reflections

  • 5043 reflections with I > 2σ(I)

  • R int = 0.023

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.090

  • S = 1.02

  • 5714 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812042419/hb6964sup1.cif

e-68-o3189-sup1.cif (25.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812042419/hb6964Isup2.hkl

e-68-o3189-Isup2.hkl (279.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812042419/hb6964Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯F1i 0.95 2.39 3.1652 (14) 139
C15—H15A⋯F2 0.98 2.38 3.1018 (13) 130

Symmetry code: (i) Inline graphic.

Acknowledgments

HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). WSL also thanks the Malaysian Government and USM for the position of Research Officer under the Research University Grant (1001/PFIZIK/811160).

supplementary crystallographic information

Comment

Hydrazones are important compounds for drug design, as possible ligands for metal complexes, organocatalysis and also for the syntheses of heterocyclic compounds (e.g. Barbazan et al., 2008; Banerjee et al., 2009; Ghavtadze et al., 2008). As part of our ongoing studies in this area (Fun et al., 2011a,b), we now describe the structure of the title compound, (I).

The title compound, as shown in Fig. 1, exists in trans conformation with respect to the C7═N1 bond [C7═N1 = 1.2952 (11) Å]. An S(6) ring is formed via an intramolecular C15—H15A···F2 hydrogen bond (Table 1). The dihedral angle between the benzene rings (C1–C6 & C8–C13) is 42.09 (4)°.

In the crystal, Fig. 2, the molecules are linked into chains along [101] by C1—H1A···F1 hydrogen bonds (Table 1).

Experimental

Equimolar amount of [2,3-dichloro-6-methyl-5-(trifluoromethyl)phenyl]hydrazine and acetophenone were dissolved in a minimum amount of ethanol, then followed by the addition of 0.5 ml concentrated sulfuric acid. The solution was refluxed for 8 h then cooled to room temperature and poured into ice cold water. The solid product was collected through filtration and then dried using a drying oven at 80°C. The product was redissolved in ethanol for recrystalliziation to give yellow blocks of (I). Melting point: 368 K.

Refinement

N-bound H atom was located from the difference Fourier map and were refined with a riding model with Uiso(H) = 1.2 Ueq(N) [N–H = 0.8915 Å]. The remaining H atoms were positioned geometrically and refined with a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C) [C–H = 0.95 or 0.98 Å]. A rotating group model was applied to the methyl groups. In the final refinement, two outliners (1 2 2 and 1 2 3) were omitted.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the a axis, showing the chains along [101]. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.

Crystal data

C16H13Cl2F3N2 F(000) = 736
Mr = 361.18 Dx = 1.515 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 9943 reflections
a = 11.2600 (16) Å θ = 2.4–32.6°
b = 11.4025 (17) Å µ = 0.44 mm1
c = 14.8398 (16) Å T = 100 K
β = 123.773 (7)° Block, yellow
V = 1583.8 (4) Å3 0.32 × 0.26 × 0.22 mm
Z = 4

Data collection

Bruker SMART APEXII Duo CCD diffractometer 5714 independent reflections
Radiation source: fine-focus sealed tube 5043 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.023
φ and ω scans θmax = 32.6°, θmin = 2.4°
Absorption correction: multi-scan (SADABS); Bruker, 2009) h = −17→17
Tmin = 0.872, Tmax = 0.911 k = −17→16
22269 measured reflections l = −22→22

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0515P)2 + 0.4114P] where P = (Fo2 + 2Fc2)/3
5714 reflections (Δ/σ)max = 0.001
210 parameters Δρmax = 0.49 e Å3
0 restraints Δρmin = −0.27 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.07133 (2) 0.57463 (2) 0.919947 (18) 0.02243 (6)
Cl2 0.27412 (3) 0.51560 (3) 1.16881 (2) 0.03137 (7)
F1 0.76376 (7) 0.64100 (7) 1.26985 (6) 0.04073 (19)
F2 0.72355 (7) 0.79611 (5) 1.17471 (5) 0.02773 (13)
F3 0.76971 (7) 0.63239 (6) 1.12760 (7) 0.03906 (18)
N1 0.24945 (8) 0.64196 (7) 0.75151 (6) 0.01758 (13)
N2 0.21577 (8) 0.68019 (7) 0.82355 (6) 0.01970 (14)
H1 0.1231 0.6830 0.7982 0.024*
C1 0.08557 (10) 0.60301 (8) 0.46427 (7) 0.02097 (16)
H1A −0.0116 0.6165 0.4387 0.025*
C2 0.11987 (11) 0.56352 (9) 0.39242 (8) 0.02343 (17)
H2A 0.0464 0.5506 0.3184 0.028*
C3 0.26177 (11) 0.54303 (8) 0.42924 (8) 0.02305 (17)
H3A 0.2855 0.5160 0.3806 0.028*
C4 0.36909 (10) 0.56246 (8) 0.53808 (8) 0.02125 (16)
H4A 0.4660 0.5484 0.5634 0.026*
C5 0.33508 (9) 0.60236 (7) 0.60973 (7) 0.01782 (15)
H5A 0.4090 0.6157 0.6836 0.021*
C6 0.19245 (9) 0.62302 (7) 0.57366 (7) 0.01647 (14)
C7 0.15569 (9) 0.66423 (7) 0.65008 (7) 0.01714 (14)
C8 0.30910 (9) 0.65100 (7) 0.93301 (7) 0.01651 (14)
C9 0.45661 (9) 0.67664 (7) 0.98943 (7) 0.01764 (15)
C10 0.54176 (9) 0.65007 (7) 1.10045 (7) 0.01872 (15)
C11 0.48613 (10) 0.60149 (8) 1.15569 (7) 0.02078 (16)
H11A 0.5468 0.5845 1.2309 0.025*
C12 0.34106 (10) 0.57840 (8) 1.09936 (7) 0.01957 (15)
C13 0.25253 (9) 0.60334 (8) 0.98898 (7) 0.01731 (14)
C14 0.01767 (10) 0.72840 (9) 0.60945 (8) 0.02298 (17)
H14A 0.0361 0.7958 0.6565 0.034*
H14B −0.0503 0.6753 0.6102 0.034*
H14C −0.0225 0.7558 0.5353 0.034*
C15 0.51547 (11) 0.73642 (9) 0.93086 (8) 0.02373 (17)
H15A 0.6001 0.7824 0.9828 0.036*
H15B 0.4426 0.7885 0.8747 0.036*
H15C 0.5418 0.6770 0.8972 0.036*
C16 0.69874 (10) 0.67904 (8) 1.16736 (8) 0.02398 (18)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.01517 (9) 0.02920 (11) 0.02257 (11) −0.00304 (7) 0.01028 (8) −0.00384 (7)
Cl2 0.02648 (12) 0.04378 (15) 0.02537 (12) −0.00394 (10) 0.01537 (10) 0.00792 (10)
F1 0.0198 (3) 0.0430 (4) 0.0341 (4) −0.0034 (3) −0.0007 (3) 0.0151 (3)
F2 0.0243 (3) 0.0190 (3) 0.0311 (3) −0.0060 (2) 0.0099 (2) −0.0040 (2)
F3 0.0199 (3) 0.0342 (3) 0.0623 (5) −0.0027 (2) 0.0223 (3) −0.0143 (3)
N1 0.0180 (3) 0.0189 (3) 0.0170 (3) 0.0008 (2) 0.0105 (3) −0.0012 (2)
N2 0.0173 (3) 0.0259 (4) 0.0161 (3) 0.0032 (3) 0.0094 (3) −0.0008 (3)
C1 0.0184 (4) 0.0250 (4) 0.0172 (4) −0.0010 (3) 0.0084 (3) −0.0001 (3)
C2 0.0270 (4) 0.0244 (4) 0.0171 (4) −0.0028 (3) 0.0111 (3) −0.0015 (3)
C3 0.0314 (5) 0.0200 (4) 0.0232 (4) 0.0004 (3) 0.0185 (4) −0.0007 (3)
C4 0.0228 (4) 0.0206 (4) 0.0244 (4) 0.0031 (3) 0.0157 (4) 0.0015 (3)
C5 0.0176 (3) 0.0176 (3) 0.0181 (3) 0.0016 (3) 0.0099 (3) 0.0014 (3)
C6 0.0168 (3) 0.0161 (3) 0.0162 (3) 0.0004 (3) 0.0090 (3) 0.0011 (3)
C7 0.0163 (3) 0.0177 (3) 0.0179 (3) 0.0009 (3) 0.0098 (3) 0.0005 (3)
C8 0.0161 (3) 0.0164 (3) 0.0171 (3) 0.0004 (3) 0.0092 (3) −0.0019 (3)
C9 0.0168 (3) 0.0158 (3) 0.0209 (4) −0.0007 (3) 0.0109 (3) −0.0021 (3)
C10 0.0144 (3) 0.0156 (3) 0.0222 (4) 0.0002 (3) 0.0077 (3) −0.0005 (3)
C11 0.0181 (4) 0.0196 (4) 0.0195 (4) 0.0005 (3) 0.0072 (3) 0.0025 (3)
C12 0.0185 (4) 0.0203 (4) 0.0199 (4) −0.0006 (3) 0.0106 (3) 0.0016 (3)
C13 0.0144 (3) 0.0185 (3) 0.0183 (4) −0.0005 (3) 0.0086 (3) −0.0019 (3)
C14 0.0196 (4) 0.0267 (4) 0.0234 (4) 0.0066 (3) 0.0125 (3) 0.0042 (3)
C15 0.0228 (4) 0.0257 (4) 0.0258 (4) −0.0059 (3) 0.0155 (4) −0.0041 (3)
C16 0.0165 (4) 0.0191 (4) 0.0288 (4) −0.0009 (3) 0.0079 (3) 0.0006 (3)

Geometric parameters (Å, º)

Cl1—C13 1.7309 (9) C5—H5A 0.9500
Cl2—C12 1.7340 (10) C6—C7 1.4833 (12)
F1—C16 1.3414 (12) C7—C14 1.5075 (12)
F2—C16 1.3558 (11) C8—C13 1.4069 (12)
F3—C16 1.3394 (13) C8—C9 1.4139 (12)
N1—C7 1.2952 (11) C9—C10 1.4032 (13)
N1—N2 1.3884 (10) C9—C15 1.5165 (13)
N2—C8 1.3985 (11) C10—C11 1.3936 (13)
N2—H1 0.8915 C10—C16 1.5060 (13)
C1—C2 1.3951 (13) C11—C12 1.3850 (13)
C1—C6 1.4013 (12) C11—H11A 0.9500
C1—H1A 0.9500 C12—C13 1.3936 (12)
C2—C3 1.3912 (15) C14—H14A 0.9800
C2—H2A 0.9500 C14—H14B 0.9800
C3—C4 1.3958 (14) C14—H14C 0.9800
C3—H3A 0.9500 C15—H15A 0.9800
C4—C5 1.3916 (12) C15—H15B 0.9800
C4—H4A 0.9500 C15—H15C 0.9800
C5—C6 1.4020 (12)
C7—N1—N2 115.99 (7) C11—C10—C9 122.64 (8)
N1—N2—C8 117.97 (7) C11—C10—C16 116.48 (8)
N1—N2—H1 116.3 C9—C10—C16 120.81 (8)
C8—N2—H1 116.5 C12—C11—C10 119.05 (8)
C2—C1—C6 120.91 (8) C12—C11—H11A 120.5
C2—C1—H1A 119.5 C10—C11—H11A 120.5
C6—C1—H1A 119.5 C11—C12—C13 120.24 (8)
C3—C2—C1 119.96 (9) C11—C12—Cl2 118.45 (7)
C3—C2—H2A 120.0 C13—C12—Cl2 121.31 (7)
C1—C2—H2A 120.0 C12—C13—C8 120.66 (8)
C2—C3—C4 119.63 (9) C12—C13—Cl1 119.65 (7)
C2—C3—H3A 120.2 C8—C13—Cl1 119.69 (7)
C4—C3—H3A 120.2 C7—C14—H14A 109.5
C5—C4—C3 120.47 (9) C7—C14—H14B 109.5
C5—C4—H4A 119.8 H14A—C14—H14B 109.5
C3—C4—H4A 119.8 C7—C14—H14C 109.5
C4—C5—C6 120.44 (8) H14A—C14—H14C 109.5
C4—C5—H5A 119.8 H14B—C14—H14C 109.5
C6—C5—H5A 119.8 C9—C15—H15A 109.5
C1—C6—C5 118.60 (8) C9—C15—H15B 109.5
C1—C6—C7 120.82 (8) H15A—C15—H15B 109.5
C5—C6—C7 120.57 (7) C9—C15—H15C 109.5
N1—C7—C6 115.64 (7) H15A—C15—H15C 109.5
N1—C7—C14 123.57 (8) H15B—C15—H15C 109.5
C6—C7—C14 120.78 (7) F3—C16—F1 106.72 (9)
N2—C8—C13 118.89 (8) F3—C16—F2 106.25 (8)
N2—C8—C9 121.03 (8) F1—C16—F2 105.61 (8)
C13—C8—C9 119.91 (8) F3—C16—C10 113.04 (8)
C10—C9—C8 117.49 (8) F1—C16—C10 112.18 (8)
C10—C9—C15 122.61 (8) F2—C16—C10 112.51 (8)
C8—C9—C15 119.82 (8)
C7—N1—N2—C8 175.65 (8) C15—C9—C10—C11 176.09 (8)
C6—C1—C2—C3 0.26 (14) C8—C9—C10—C16 −177.55 (8)
C1—C2—C3—C4 −0.15 (14) C15—C9—C10—C16 −0.72 (13)
C2—C3—C4—C5 −0.14 (14) C9—C10—C11—C12 −0.09 (14)
C3—C4—C5—C6 0.32 (13) C16—C10—C11—C12 176.85 (8)
C2—C1—C6—C5 −0.09 (13) C10—C11—C12—C13 0.13 (14)
C2—C1—C6—C7 −179.58 (8) C10—C11—C12—Cl2 178.90 (7)
C4—C5—C6—C1 −0.21 (13) C11—C12—C13—C8 0.68 (13)
C4—C5—C6—C7 179.29 (8) Cl2—C12—C13—C8 −178.05 (7)
N2—N1—C7—C6 −179.96 (7) C11—C12—C13—Cl1 −179.68 (7)
N2—N1—C7—C14 0.51 (13) Cl2—C12—C13—Cl1 1.59 (11)
C1—C6—C7—N1 157.04 (8) N2—C8—C13—C12 −176.86 (8)
C5—C6—C7—N1 −22.44 (12) C9—C8—C13—C12 −1.53 (13)
C1—C6—C7—C14 −23.41 (12) N2—C8—C13—Cl1 3.50 (11)
C5—C6—C7—C14 157.11 (8) C9—C8—C13—Cl1 178.83 (6)
N1—N2—C8—C13 −131.65 (8) C11—C10—C16—F3 127.38 (9)
N1—N2—C8—C9 53.07 (11) C9—C10—C16—F3 −55.61 (12)
N2—C8—C9—C10 176.75 (8) C11—C10—C16—F1 6.65 (12)
C13—C8—C9—C10 1.52 (12) C9—C10—C16—F1 −176.35 (8)
N2—C8—C9—C15 −0.17 (12) C11—C10—C16—F2 −112.26 (10)
C13—C8—C9—C15 −175.40 (8) C9—C10—C16—F2 64.74 (12)
C8—C9—C10—C11 −0.74 (13)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C1—H1A···F1i 0.95 2.39 3.1652 (14) 139
C15—H15A···F2 0.98 2.38 3.1018 (13) 130

Symmetry code: (i) x−1, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6964).

References

  1. Banerjee, S., Mondal, S., Chakraborty, W., Sen, S., Gachhui, R., Butcher, R. J., Slawin, A. M. Z., Mandal, C. & Mitra, S. (2009). Polyhedron, 28, 2785–2793.
  2. Barbazan, P., Carballo, R., Covelo, B., Lodeiro, C., Lima, J. C. & Vazquez-Lopez, E. M. (2008). Eur. J. Inorg. Chem. pp. 2713–2716.
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  5. Fun, H.-K., Quah, C. K., Viveka, S., Madhukumar, D. J. & Nagaraja, G. K. (2011a). Acta Cryst. E67, o1933. [DOI] [PMC free article] [PubMed]
  6. Fun, H.-K., Quah, C. K., Viveka, S., Madhukumar, D. J. & Prasad, D. J. (2011b). Acta Cryst. E67, o1932. [DOI] [PMC free article] [PubMed]
  7. Ghavtadze, N., Frohlich, R. & Wurthwein, E. U. (2008). Eur. J. Org. Chem. pp. 3656–3667. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812042419/hb6964sup1.cif

e-68-o3189-sup1.cif (25.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812042419/hb6964Isup2.hkl

e-68-o3189-Isup2.hkl (279.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812042419/hb6964Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES