Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Oct 24;68(Pt 11):o3198. doi: 10.1107/S1600536812043279

3-Ethyl-4-hy­droxy-8-meth­oxy­quinolin-2(1H)-one

Stanislav Kafka a, Andrej Pevec b,*, Karel Proisl a, Roman Kimmel a, Janez Košmrlj b
PMCID: PMC3515288  PMID: 23284508

Abstract

In the title compound, C12H13NO3, the quinoline ring system is approximately planar with a maximum deviation from the least-squares plane of 0.058 (2) Å. In the crystal, N—H⋯O and O—H⋯O hydrogen bonds link the mol­ecules into chains running along the b-axis direction. The chains also feature π–π inter­actions between pyridine and benzene rings of inversion-related mol­ecules [centroid–centroid distance = 3.609 (2) Å].

Related literature  

For naturally occurring 3-alkyl-4-hy­droxy­quinolin-2-ones, see: Paul & Bose (1968); Faizutdinova et al. (1969); Jurd et al. (1983); Chen et al. (1994); Yamamoto & Harimaya (2004); Jain et al. (2006). For the first published synthesis of the title compound, see: Rapoport & Holden (1959). For recent synthetic utilization of 3-alkyl-4-hy­droxy­quinolin-2-ones, see, for example: Kimmel et al. (2010).graphic file with name e-68-o3198-scheme1.jpg

Experimental  

Crystal data  

  • C12H13NO3

  • M r = 219.23

  • Monoclinic, Inline graphic

  • a = 11.4824 (4) Å

  • b = 6.9072 (2) Å

  • c = 14.4978 (5) Å

  • β = 113.1283 (15)°

  • V = 1057.42 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.35 × 0.25 × 0.08 mm

Data collection  

  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) T min = 0.966, T max = 0.992

  • 4558 measured reflections

  • 2403 independent reflections

  • 1734 reflections with I > 2σ(I)

  • R int = 0.025

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.077

  • wR(F 2) = 0.272

  • S = 1.14

  • 2403 reflections

  • 151 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812043279/tk5161sup1.cif

e-68-o3198-sup1.cif (21.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812043279/tk5161Isup2.hkl

e-68-o3198-Isup2.hkl (115.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812043279/tk5161Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.85 (2) 2.27 (3) 2.976 (4) 140 (3)
O2—H2⋯O1ii 0.82 1.94 2.665 (4) 147

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This study was supported by the inter­nal grant of TBU in Zlin (No. IGA/FT/2012/043), funded from the resources of specific university research, and the Slovenian Research Agency (Project P1–0230–0103 and Joint Project BI—CZ/07–08–018). This work was also partly supported through the infrastructure of the EN–FIST Centre of Excellence, Ljubljana.

supplementary crystallographic information

Comment

The title compound, (I) (Fig. 1), was recently prepared as an intermediate within the framework of a study focusing on glucosylation of N-unsubstituted 4-hydroxyquinolin-2(1H)-ones by thermal condensation of diethyl ethylmalonate with o-anisidine (Kimmel et al., 2010). Some 3-alkyl-4-hydroxyquinolin-2-ones were isolated from plants Ravenia spectabilis (Paul & Bose, 1968), Haplophylum bucharicum (Faizutdinova et al., 1969), Euxylophora pareansis (Jurd et al., 1983), Zanthoxylum simulans (Chen et al., 1994), Toddalia aculeata (Jain et al., 2006) as well as from the fermentation broth of Dactylosporangium sp. (Yamamoto & Harimaya, 2004).

In the crystal structure of the title compound (I) (Fig. 2) two 3-ethyl-4-hydroxy-8-methoxyquinolin-2(1H)-one molecules are connected by two intermolecular N—H···O hydrogen bonds between protonated nitrogen atom and carbonyl group. These connections altogether with additional O—H···O hydrogen bonds between hydroxyl and carbonyl groups (Table 1) form linear chain along b axis. The chains are further stabilized by ππ interactions between pyridine and benzene rings of inversion-related pairs of quinoline molecules [centroid–centroid distance = 3.609 (2) Å].

Experimental

A mixture of o-anisidine (12.3 g, 100 mmol) and diethyl ethylmalonate (197.6 g, 105 mmol) was heated on a metal bath at 220–230 °C for 1 h and then at 260–270 °C for 6 h (until the distillation of ethanol stopped). The hot reaction mixture was cautiously poured into toluene (50 ml). After cooling, the precipitate was filtered. The residue was dissolved in aqueous sodium hydroxide solution (0.5 M, 300 ml) and the solution was filtered. The filtrate was washed with toluene (3 x 15 ml). The aqueous phase was filtered and acidified by addition of 10% hydrochloric acid to Congo red. The precipitated paste was triturated with a glass bar under an aqueous phase for several minutes and then the mixture was cooled in refrigerator for several hours, until the pasty substance hardened. The solid was filtered off, washed with water (100 ml), air dried and crystallized from ethanol affording 13.6 g (62% of theoretical yield) of the title compound (I), m. pt 496–498 K (benzene – ethanol). In the literature (Rapoport & Holden, 1959), a m. pt range of 498–499 K is reported.

Refinement

The N–bonded hydrogen atom was located in a difference map and refined with the using a distance restraint, N—H = 0.86±0.02 Å, and with Uiso(H) = 1.2Ueq(N). All other H atoms were included in the model at geometrically calculated positions and refined using a riding model, with C—H bond lengths constrained to 0.93 Å (aromatic H), 0.96 Å (methyl H), 0.97 Å (methylene H) and O—H = 0.82 Å, and with Uiso(H) values of 1.2Ueq(C) [for aromatic and methylene H] or 1.5Ueq(C) [for oxygen and methyl H]. The exceptionally large value for the first parameter on the SHELXL weighting line altogether with large value for weighted R factor indicate possible twinning. The function TwinRotMat in PLATON (Spek, 2009) suggests that the structure could be twinned. However, applying the proposed twin law does not affect the refinement in the sense of better R values. Additionally, the BASF parameter has a value close to zero after refinement. Hence, a twin model was not employed.

Figures

Fig. 1.

Fig. 1.

A view of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The supramolecular chain in the crystal structure of (I), with the O—H···O and N—H···O hydrogen bonds, and π–π interactions denoted by dashed lines. Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (i) -x, -y + 2, -z; (ii) x, y - 1, z]

Crystal data

C12H13NO3 F(000) = 464
Mr = 219.23 Dx = 1.377 Mg m3
Monoclinic, P21/c Melting point = 496–498 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 11.4824 (4) Å Cell parameters from 2554 reflections
b = 6.9072 (2) Å θ = 0.4–27.5°
c = 14.4978 (5) Å µ = 0.10 mm1
β = 113.1283 (15)° T = 293 K
V = 1057.42 (6) Å3 Prism, colourless
Z = 4 0.35 × 0.25 × 0.08 mm

Data collection

Nonius KappaCCD area-detector diffractometer 2403 independent reflections
Radiation source: fine-focus sealed tube 1734 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.025
φ scans + ω scans θmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) h = −14→14
Tmin = 0.966, Tmax = 0.992 k = −8→8
4558 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.077 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.272 H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.1076P)2 + 1.7454P] where P = (Fo2 + 2Fc2)/3
2403 reflections (Δ/σ)max = 0.0001
151 parameters Δρmax = 0.37 e Å3
1 restraint Δρmin = −0.29 e Å3

Special details

Experimental. 279 frames in 4 sets of φ scans + ω scans. Rotation/frame = 1.6 °. Crystal-detector distance = 32 mm. Measuring time = 150 s/°.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.0025 (3) 0.7822 (4) 0.0870 (2) 0.0373 (7)
H1N −0.045 (3) 0.880 (4) 0.064 (3) 0.045*
O1 0.1611 (2) 0.9727 (3) 0.0836 (2) 0.0482 (7)
O2 0.2406 (2) 0.3155 (4) 0.1696 (2) 0.0506 (7)
H2 0.1991 0.2151 0.1570 0.076*
O3 −0.2344 (2) 0.7758 (4) 0.0700 (2) 0.0584 (8)
C1 0.1260 (3) 0.8088 (5) 0.1009 (3) 0.0362 (7)
C2 0.2089 (3) 0.6432 (5) 0.1318 (3) 0.0370 (8)
C3 0.3448 (3) 0.6709 (6) 0.1462 (3) 0.0437 (9)
H3A 0.3497 0.7733 0.1020 0.052*
H3B 0.3757 0.5528 0.1275 0.052*
C4 0.4286 (4) 0.7222 (9) 0.2532 (4) 0.0740 (15)
H4A 0.4028 0.8447 0.2702 0.111*
H4B 0.5150 0.7303 0.2599 0.111*
H4C 0.4212 0.6241 0.2975 0.111*
C5 0.1612 (3) 0.4696 (5) 0.1440 (2) 0.0359 (7)
C6 0.0321 (3) 0.4481 (5) 0.1348 (2) 0.0356 (7)
C7 −0.0181 (3) 0.2749 (5) 0.1554 (3) 0.0407 (8)
H7 0.0325 0.1651 0.1758 0.049*
C8 −0.1418 (4) 0.2694 (6) 0.1450 (3) 0.0473 (9)
H8 −0.1749 0.1547 0.1580 0.057*
C9 −0.2195 (3) 0.4337 (6) 0.1151 (3) 0.0469 (9)
H9 −0.3035 0.4269 0.1080 0.056*
C10 −0.1721 (3) 0.6033 (6) 0.0964 (3) 0.0412 (8)
C11 −0.0451 (3) 0.6117 (5) 0.1052 (2) 0.0353 (7)
C12 −0.3645 (4) 0.7815 (8) 0.0518 (4) 0.0780 (16)
H12A −0.4091 0.6864 0.0022 0.117*
H12B −0.3977 0.9078 0.0281 0.117*
H12C −0.3753 0.7540 0.1129 0.117*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0334 (14) 0.0319 (14) 0.0455 (16) 0.0049 (11) 0.0145 (12) 0.0054 (12)
O1 0.0463 (14) 0.0305 (13) 0.0695 (18) −0.0029 (10) 0.0246 (13) 0.0036 (12)
O2 0.0354 (13) 0.0334 (13) 0.0717 (18) 0.0040 (10) 0.0091 (12) −0.0001 (13)
O3 0.0389 (14) 0.0581 (18) 0.081 (2) 0.0121 (12) 0.0263 (14) 0.0145 (15)
C1 0.0368 (16) 0.0330 (17) 0.0390 (17) −0.0012 (13) 0.0150 (14) −0.0018 (13)
C2 0.0339 (16) 0.0361 (17) 0.0394 (17) −0.0012 (13) 0.0127 (13) −0.0042 (14)
C3 0.0351 (17) 0.0407 (19) 0.055 (2) −0.0013 (14) 0.0170 (15) −0.0026 (16)
C4 0.040 (2) 0.103 (4) 0.073 (3) −0.020 (2) 0.016 (2) −0.031 (3)
C5 0.0339 (16) 0.0325 (16) 0.0357 (16) 0.0027 (13) 0.0078 (13) −0.0011 (13)
C6 0.0377 (16) 0.0358 (17) 0.0291 (15) −0.0024 (13) 0.0084 (13) −0.0026 (13)
C7 0.0445 (19) 0.0371 (18) 0.0388 (18) −0.0023 (14) 0.0144 (14) 0.0037 (15)
C8 0.050 (2) 0.046 (2) 0.048 (2) −0.0106 (17) 0.0208 (17) 0.0061 (17)
C9 0.0376 (18) 0.059 (2) 0.047 (2) −0.0065 (16) 0.0197 (15) 0.0021 (18)
C10 0.0362 (17) 0.048 (2) 0.0388 (17) 0.0028 (15) 0.0143 (14) 0.0013 (15)
C11 0.0349 (16) 0.0359 (17) 0.0330 (16) −0.0012 (13) 0.0110 (13) −0.0006 (13)
C12 0.039 (2) 0.083 (4) 0.108 (4) 0.017 (2) 0.025 (2) 0.000 (3)

Geometric parameters (Å, º)

N1—C1 1.364 (4) C4—H4B 0.9600
N1—C11 1.367 (4) C4—H4C 0.9600
N1—H1N 0.852 (19) C5—C6 1.443 (4)
O1—C1 1.260 (4) C6—C11 1.396 (5)
O2—C5 1.355 (4) C6—C7 1.409 (5)
O2—H2 0.8200 C7—C8 1.369 (5)
O3—C10 1.365 (5) C7—H7 0.9300
O3—C12 1.412 (5) C8—C9 1.403 (6)
C1—C2 1.442 (5) C8—H8 0.9300
C2—C5 1.359 (5) C9—C10 1.363 (5)
C2—C3 1.503 (4) C9—H9 0.9300
C3—C4 1.512 (6) C10—C11 1.415 (5)
C3—H3A 0.9700 C12—H12A 0.9600
C3—H3B 0.9700 C12—H12B 0.9600
C4—H4A 0.9600 C12—H12C 0.9600
C1—N1—C11 123.9 (3) C2—C5—C6 122.1 (3)
C1—N1—H1N 115 (3) C11—C6—C7 119.3 (3)
C11—N1—H1N 121 (3) C11—C6—C5 116.7 (3)
C5—O2—H2 109.5 C7—C6—C5 123.9 (3)
C10—O3—C12 118.4 (3) C8—C7—C6 119.5 (3)
O1—C1—N1 119.1 (3) C8—C7—H7 120.2
O1—C1—C2 123.4 (3) C6—C7—H7 120.2
N1—C1—C2 117.4 (3) C7—C8—C9 121.2 (3)
C5—C2—C1 119.3 (3) C7—C8—H8 119.4
C5—C2—C3 123.0 (3) C9—C8—H8 119.4
C1—C2—C3 117.7 (3) C10—C9—C8 120.1 (3)
C2—C3—C4 112.3 (3) C10—C9—H9 120.0
C2—C3—H3A 109.1 C8—C9—H9 120.0
C4—C3—H3A 109.1 C9—C10—O3 126.9 (3)
C2—C3—H3B 109.1 C9—C10—C11 119.7 (3)
C4—C3—H3B 109.1 O3—C10—C11 113.4 (3)
H3A—C3—H3B 107.9 N1—C11—C6 120.2 (3)
C3—C4—H4A 109.5 N1—C11—C10 119.6 (3)
C3—C4—H4B 109.5 C6—C11—C10 120.1 (3)
H4A—C4—H4B 109.5 O3—C12—H12A 109.5
C3—C4—H4C 109.5 O3—C12—H12B 109.5
H4A—C4—H4C 109.5 H12A—C12—H12B 109.5
H4B—C4—H4C 109.5 O3—C12—H12C 109.5
O2—C5—C2 117.8 (3) H12A—C12—H12C 109.5
O2—C5—C6 120.0 (3) H12B—C12—H12C 109.5
C11—N1—C1—O1 −178.8 (3) C5—C6—C7—C8 179.6 (3)
C11—N1—C1—C2 3.3 (5) C6—C7—C8—C9 −0.6 (5)
O1—C1—C2—C5 −176.7 (3) C7—C8—C9—C10 −0.4 (6)
N1—C1—C2—C5 1.0 (5) C8—C9—C10—O3 −177.8 (4)
O1—C1—C2—C3 1.6 (5) C8—C9—C10—C11 1.4 (5)
N1—C1—C2—C3 179.4 (3) C12—O3—C10—C9 −5.3 (6)
C5—C2—C3—C4 −89.5 (5) C12—O3—C10—C11 175.5 (4)
C1—C2—C3—C4 92.3 (4) C1—N1—C11—C6 −3.5 (5)
C1—C2—C5—O2 177.8 (3) C1—N1—C11—C10 174.7 (3)
C3—C2—C5—O2 −0.5 (5) C7—C6—C11—N1 178.6 (3)
C1—C2—C5—C6 −5.1 (5) C5—C6—C11—N1 −0.5 (5)
C3—C2—C5—C6 176.7 (3) C7—C6—C11—C10 0.3 (5)
O2—C5—C6—C11 −178.1 (3) C5—C6—C11—C10 −178.8 (3)
C2—C5—C6—C11 4.8 (5) C9—C10—C11—N1 −179.6 (3)
O2—C5—C6—C7 2.8 (5) O3—C10—C11—N1 −0.3 (5)
C2—C5—C6—C7 −174.3 (3) C9—C10—C11—C6 −1.3 (5)
C11—C6—C7—C8 0.6 (5) O3—C10—C11—C6 178.0 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.85 (2) 2.27 (3) 2.976 (4) 140 (3)
O2—H2···O1ii 0.82 1.94 2.665 (4) 147

Symmetry codes: (i) −x, −y+2, −z; (ii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5161).

References

  1. Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Chen, I. S., Wu, S. J., Lin, Y. C., Tsai, I. L., Seki, H., Ko, F. N. & Teng, C. M. (1994). Phytochemistry, 36, 237–240.
  3. Faizutdinova, Z. Sh., Bessonova, I. A. & Yunusov, S. Yu. (1969). Khim. Prir. Soedin. 5, 455–456.
  4. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  5. Jain, S. C., Pandey, M. K., Upadhyay, R. K., Kumar, R., Hundal, G. & Hundal, M. S. (2006). Phytochemistry, 67, 1005–1010. [DOI] [PubMed]
  6. Jurd, L., Benson, M. & Wong, R. Y. (1983). Aust. J. Chem. 36, 759–768.
  7. Kimmel, R., Kafka, S. & Košmrlj, J. (2010). Carbohydr. Res. 345, 768–779. [DOI] [PubMed]
  8. Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  9. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  10. Paul, B. D. & Bose, P. K. (1968). J. Indian Chem. Soc. 45, 552–553.
  11. Rapoport, H. & Holden, K. G. (1959). J. Am. Chem. Soc. 81, 3738–3743.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Yamamoto, Y. & Harimaya, K. (2004). Chem. Lett. 33, 238–239.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812043279/tk5161sup1.cif

e-68-o3198-sup1.cif (21.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812043279/tk5161Isup2.hkl

e-68-o3198-Isup2.hkl (115.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812043279/tk5161Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES